Protoplasma

, Volume 253, Issue 4, pp 1111–1124 | Cite as

Cytological characterization of anther development in Panax ginseng Meyer

  • Yu-Jin Kim
  • Moon-Gi Jang
  • Lu Zhu
  • Jeniffer Silva
  • Xiaolei Zhu
  • Johan Sukweenadhi
  • Woo-Saeng Kwon
  • Deok-Chun Yang
  • Dabing Zhang
Original Article

Abstract

Ginseng (Panax ginseng), a valued medicinal herb, is a slow-growing plant that flowers after 3 years of growth with the formation of a solitary terminal umbel inflorescence. However, little is known about cytological events during ginseng reproduction, such as the development of the male organ, the stamen. To better understand the mechanism controlling ginseng male reproductive development, here, we investigated the inflorescence and flower structure of ginseng. Moreover, we performed cytological analysis of anther morphogenesis and showed the common and specialized cytological events including the formation of four concentric cell layers surrounding male reproductive cells followed by subsequent cell differentiation and degeneration of tapetal cells, as well as the formation of mature pollen grains via meiosis and mitosis during ginseng anther development. Particularly, our transverse section and microscopic observations showed that the ginseng tapetal layer exhibits obvious nonsynchronous cell division evidenced by the observation of one or two tapetal layers frequently observed in one anther lobe, suggesting the unique control of cell division. To facilitate the future study on ginseng male reproduction, we grouped the anther development into 10 developmental stages according to the characterized cytological events.

Keywords

Pollen Microspore Cell division Ginseng Reproductive development Stages of anther development 

Notes

Acknowledgments

We express our thanks to Dr. Jakyung Lee, Professor Gynheung An (Kyung Hee Unviversity) for comments about flower sampling and fixation and Li Yang, Junping Yu, and Dr. Jie Xu (Shanghai Jiao Tong University) for comments about flower section. This work was supported by the funds from Ministry of Science and Tehnology (2015DFG32560), and the Programme of Introducing Talents of Discipline to Universities (111 Project, B14016), Young Scientist Exchange Program between Republic of Korea (NRF) and The People’s Republic of China (MOST) and NRF (2013R1A1A2064430) (YJ Kim); and Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (iPET; 112142-05-1-CG000), Republic of Korea (DC Yang).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

709_2015_869_MOESM1_ESM.docx (4.5 mb)
ESM 1 (DOCX 4643 kb)

References

  1. Albani MC, Coupland G (2010) Comparative analysis of flowering in annual and perennial plants. Curr Top Dev Biol 91:323–348CrossRefPubMedGoogle Scholar
  2. Aya K, Ueguchi‐Tanaka M, Kondo M, Hamada K, Yano K, Nishimura M, Matsuoka M (2009) Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell 21(5):1453–1472CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baranov A (1966) Recent advances in our knowledge of the morphology, cultivation and used of ginseng (Panax ginseng C.A. Meyer). Econ Bot 20(4):403–406CrossRefGoogle Scholar
  4. Bedinger P (1992) The remarkable biology of pollen. Plant Cell 4(8):879–887CrossRefPubMedPubMedCentralGoogle Scholar
  5. Beeckman T, Viane R (2000) Embedding thin plant specimens for oriented sectioning. Biotech Histochem 75(1):23–26CrossRefPubMedGoogle Scholar
  6. Blackmore S, Wortley AH, Skvarla JJ, Rowley JR (2007) Pollen wall development in flowering plants. New Phytol 174(3):483–498CrossRefPubMedGoogle Scholar
  7. Boss TK, Strauss SH (1994) Floral phenology and morphology of black cottonwood. Populus trichocarpa (Salicaceae) Am J Bot 81:562–567CrossRefGoogle Scholar
  8. Cecchetti V, Brunetti P, Napoli N, Fattorini L, Altamura MM, Costantino P, Cardarelli M (2015) ABCB1 and ABCB19 auxin transporters have synergistic effects on early and late Arabidopsis anther development. J Integr Plant Biol. doi: 10.1111/jipb.12332 PubMedGoogle Scholar
  9. Chang F, Wang Y, Wang S, Ma H (2011) Molecular control of microsporogenesis in Arabidopsis. Curr Opin Plant Biol 14(1):66–73CrossRefPubMedGoogle Scholar
  10. Chaubal R, Zanella C, Trimnell MR, Fox TW, Albersten MC, Bedinger P (2000) Two male-sterile mutants of Zea mays (Poaceae) with an extra cell division in the anther wall. Am J Bot 87:1193–1201CrossRefPubMedGoogle Scholar
  11. Chehregani A, Tanaomi N, Ranjbar M (2008) Pollen and anther development in Onobrychis schahuensis Bornm. (Fabaceae). Int J Bot 4(2):241–244CrossRefGoogle Scholar
  12. Feng X, Dickinson HG (2010) Cell-cell interactions during patterning of the Arabidopsis anther. Biochem Soc Trans 38(2):571–576CrossRefPubMedGoogle Scholar
  13. Fisher GC (1914) Seed development in the genus Peperomia. Bull Torr Bot Club 41:221–241CrossRefGoogle Scholar
  14. Furness CA, Rudall PJ (1998) The tapetum and systematics in monocotyledons. Bot Rev 64(3):201–239CrossRefGoogle Scholar
  15. Gabarayeva N, Grigorjeva V, Rowley JR, Hemsley AR (2009a) Sporoderm development in Trevesia burckii (Araliaceae). I. Tetrad period: further evidence for the participation of self-assembly processes. Rev Palaeobot Palynol 156:211–232CrossRefGoogle Scholar
  16. Gabarayeva N, Grigorjeva V, Rowley JR, Hemsley AR (2009b) Sporoderm development in Trevesia burckii (Araliaceae) II. Post-tetrad period: further evidence for the participation of self-assembly processes. Rev Palaeobot Palynol 156:233–247CrossRefGoogle Scholar
  17. Heslop-Harrison J (1971) Wall pattern formation in angiosperm microsporogenesis. Symp Soc Exp Biol 25:277–300PubMedGoogle Scholar
  18. Huysmans S, El-Ghazaly G, Smets E (1998) Orbicules in Angiosperms: morphology, function, distribution, and relation with Tapetum Types. Bot Rev 64(3):240–272CrossRefGoogle Scholar
  19. Igersheim A, Cichocki O (1996) A simple method for microtome sectioning of prehistoric charcoal specimens, embedded in 2-hydroxyethyl methacrylate (HEMA). Rev Palaeobot Palynol 92:389–393CrossRefGoogle Scholar
  20. Jeong BK (2005) Fine structural study of pollen wall development at late stage of microsporogenesis in Panax ginseng. Kor J Electron Microsc 35:1–10Google Scholar
  21. Julian C, Rodrigo J, Herrero M (2011) Stamen development and winter dormancy in apricot (Prunus armeniaca). Ann Bot 108:617–625CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kelliher T, Egger RL, Zhang H, Walbot V (2014) Unresolved issues in pre-meiotic anther development. Front Plant Sci 21:347–355Google Scholar
  23. Kim MJ, Kim IS (1995) Microsporogenesis of Hibiscus syriacus L. and its sporoderm differentiation. J Plant Biol 38(1):95–105Google Scholar
  24. Kim YS, Lee HS, Lee MH, Yoo OJ, Liu JR (1998) A MADS Box gene Homologous to AG is expressed in seedlings as well as in flower of ginseng. Plant Cell Physiol 39(8):836–845CrossRefPubMedGoogle Scholar
  25. Kim YJ, Jeon JN, Jang MG, Oh JY, Kwon WS, Jung SK, Yang DC (2014) Ginsenoside profiles and related gene expression during foliation in Panax ginseng Meyer. J Ginseng Res 38(1):66–72CrossRefPubMedGoogle Scholar
  26. Koltunow AM, Soltys K, Nito N, McClure S (1995) Anther, ovule, seed, and nucellar embryo development in Citrus sinensis cv. Valencia. Can J Bot 73(10):1567–1582CrossRefGoogle Scholar
  27. Kreunen SS, Osborn JM (1999) Pollen and anther development in Nelumbo (Nelumbonaceae). Am J Bot 86(12):1662–1676CrossRefPubMedGoogle Scholar
  28. Lee OR, Sathiyaraj G, Kim YJ, In JG, Kwon WS, Kim JH, Yang DC (2011) Defense genes induced by pathogens and abiotic stresses in Panax ginseng C.A. Meyer. J Ginseng Res 35(1):21–30CrossRefGoogle Scholar
  29. Li H, Zhang D (2010) Biosynthesis of anther cuticle and pollen exine in rice. Plant Signal Behav 5(9):1121–1123CrossRefPubMedPubMedCentralGoogle Scholar
  30. Li N, Zhang DS, Liu HS, Yin CS, Li XX, Liang WQ, Yuan Z, Xu B, Chu HW, Wang J, Wen TQ, Huang H, Luo D, Ma H, Zhang DB (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18(11):2999–3014CrossRefPubMedPubMedCentralGoogle Scholar
  31. Li H, Pinot F, Sauveplane V, Werck-Reichhart D, Diehl P, Schreiber L, Franke R, Zhang P, Chen L, Gao Y, Liang W, Zhang D (2010) Cytochrome P450 family member CYP704B2 catalyzes the {omega}-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. Plant Cell 22(1):173–190CrossRefPubMedPubMedCentralGoogle Scholar
  32. Liu L-D, Wang Z-L, Guo-Wei T, Shen J-H (1998) Megasporogenesis, microsporogenesis and development of gametophytes in Eleutherococcus senticosus (Araliaceae). Acta Phyto Sin 36(4):289–297Google Scholar
  33. Meloche CG, Diggle PK (2003) The pattern of carbon allocation supporting growth of preformed shoot primordia in Acomastylis rossii (Rosaceae). Am J Bot 90:1313–1320CrossRefPubMedGoogle Scholar
  34. Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M (2005) The NAC Transcription Factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 17(11):2993–3006CrossRefPubMedPubMedCentralGoogle Scholar
  35. Morant M, Jorgensen K, Schaller H, Pinot F, Moller BL, Werck-Reichhart D, Bak S (2007) CYP703 Is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. Plant Cell 19(5):1473–1487CrossRefPubMedPubMedCentralGoogle Scholar
  36. Nakamura AT, Longhi-Wagner HM, Scatena VL (2010) Anther and pollen development in some species of Poaceae (Poales). Braz J Biol 70:351–360CrossRefPubMedGoogle Scholar
  37. Nuraliev MS, Oskolski AA, Sokoloff DD, Remizowa MV (2010) Flowers of Araliaceae: structural diversity, developmental and evolutionary aspects. Plant Div Evol 128:247–268CrossRefGoogle Scholar
  38. Oh JY, Kim YJ, Jang MG, Joo SD, Kwon WS, Kim SY, Jung SK, Yang DC (2014) Investigation of ginsenosides in different tissues after elicitor treatment in Panax ginseng. J Ginseng Res 38(4):270–277CrossRefPubMedPubMedCentralGoogle Scholar
  39. Pandey AK, Dwivedi MD, Mathur RR (2014) Embryology of Cucurbitaceae and circumscription of Cucurbitales: a review. Int J Plant Rep Biol 6:75–98Google Scholar
  40. Parish RW, Li SF (2010) Death of a tapetum: a prgramme of developmental altruism. Plant Sci 178:73–89CrossRefGoogle Scholar
  41. Quilichini TD, Douglas CJ, Samuels AL (2014) New views of tapetum ultrastructure and pollen exine development in Arabidopsis thaliana. Ann Bot 114(6):1189–1201CrossRefPubMedPubMedCentralGoogle Scholar
  42. Racich JL, Koutsky JA (1976) Nodular structure in epoxy resins. J Appl Polym Sci 20(8):2111–2129CrossRefGoogle Scholar
  43. Raghavan V (1988) Anther and pollen development in rice (Oryza sativa). Am J Bot 75(2):183–196CrossRefGoogle Scholar
  44. Reunov AA, Reunova GD, Alexandrova YN, Muzarok TI, Zhuravlev YN (2008) The pollen metamorphosis phenomenon in Panax ginseng, Aralia elata and Oplopanax elatus; an addition to discussion concerning the Panax affinity in Araliaceae. Zygote 17(1):1–17CrossRefPubMedGoogle Scholar
  45. Reunova GD, Reunov AA, Aleksandrova YN, Muzarok TI, Zhuravlev YN (2007) Pollen heteromorphism in Panax ginseng C. A. Meyer (Araliaceae) anthers. Dokl Biol Sci 412:76–78CrossRefPubMedGoogle Scholar
  46. Sajo MG, Furness CA, Prychid CJ, Rudall PJ (2005) Microsporogenesis and anther development in Bromeliaceae. Grana 44:65–74CrossRefGoogle Scholar
  47. Sanders PM, Bui AQ, Weterings K, McIntire KN, Hsu YC, Lee PY, Truong MT, Beals TP, Goldberg RB (1999) Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod 11:297–322CrossRefGoogle Scholar
  48. Sawhney VK, Bhadula S (2011) Microsporogenesis in the normal and male-sterile stamenless-2 mutant of tomato (Lycopersicon esculentum). Can J Bot 66:2013–2021Google Scholar
  49. Shi J, Tan H, Yu XH, Liu Y, Liang W, Ranathunge K, Franke RB, Schreiber L, Wang Y, Kai G, Shanklin J, Ma H, Zhang D (2011) Defective pollen wall of required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. Plant Cell 23(6):2225–2246CrossRefPubMedPubMedCentralGoogle Scholar
  50. Thompson GA (1987) Botanical characteristics of ginseng. In Herbs, Spices, and Medicinal Plants: Recent Advances in Botany, Horticulture, and Pharmacology, Edited by: Craker LE, Simon JE Vol. 2Google Scholar
  51. Tseng CC, Shoup JR, Chuang TI, Hsieh WC (1983) Pollen morphology of Acanthopanax (Araliaceae). Grana 22:11–17CrossRefGoogle Scholar
  52. Wen J, Nowicke JW (1999) Pollen ultrastructure of Panax (The ginseng genus, Araliaceae), an eastern Asian and eastern north American disjunct genus. Am J Bot 86(11):1624–1636CrossRefPubMedGoogle Scholar
  53. Wilson ZA, Zhang DB (2009) From Arabidopsis to rice: pathways in pollen development. J Exp Bot 60(5):1479–1492CrossRefPubMedGoogle Scholar
  54. Wu SS, Platt KA, Ratnayake C, Wang TW, Ting JT, Huang AH (1997) Isolation and characterization of neutral-lipid-containing organelles and globuli-filled plastids from Brassica napus tapetum. Proc Natl Acad Sci U S A 94(23):12711–12716CrossRefPubMedPubMedCentralGoogle Scholar
  55. Yang C, Vizcay-Barrena G, Conner K, Wilson ZA (2007) MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell 19(11):3530–3548CrossRefPubMedPubMedCentralGoogle Scholar
  56. Yang X, Wu D, Shi J, He Y, Pinot F, Grausem B, Yin C, Zhu L, Chen M, Luo Z, Liang W, Zhang D (2014) Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine. J Integr Plant Biol 56(10):979–994CrossRefPubMedGoogle Scholar
  57. Yeung EC, Oinam GS, Yeung SS, Harry I (2011) Anther pollen and tapetum development in safflower, Carthamus tinctorius L. Sex Plant Reprod 24(4):307–317CrossRefPubMedGoogle Scholar
  58. Zhang D, Wilson ZA (2009) Stamen specification and anther development in rice. Chin Sci Bull 54(14):2342–2353CrossRefGoogle Scholar
  59. Zhang D, Yang L (2014) Specification of tapetum and microsporocyte cells within the anther. Curr Opin Plant Biol 17:49–55CrossRefPubMedGoogle Scholar
  60. Zhang D, Yuan Z (2014) Molecular control of grass inflorescence development. Annu Rev Plant Biol 65:553–578CrossRefPubMedGoogle Scholar
  61. Zhang C, Guinel FC, Moffatt BA (2002) A comparative ultrastructural study of pollen development in Arabidopsis thaliana ecotype Columbia and male-sterile mutant apt1-3. Protoplasma 219(1–2):59–71CrossRefPubMedGoogle Scholar
  62. Zhang Z, Kang X, Wang S, Li D, Chen H (2009) Pollen development and multi-nucleate microspores of Populus bolleana Lauche. For Stud China 10:107–111CrossRefGoogle Scholar
  63. Zhang D, Luo X, Zhu L (2011) Cytological analysis and genetic control of rice anther development. J Genet Genomics 38(9):379–390CrossRefPubMedGoogle Scholar
  64. Zhang Y, Liang W, Shi J, Xu J, Zhang D (2013) MYB56 encoding a R2R3 MYB transcription factor regulates seed size in Arabidopsis thaliana. J Integr Plant Biol 55(11):1166–1178CrossRefPubMedGoogle Scholar
  65. Zhao D (2009) Control of anther cell differentiation: a teamwork of receptor-like kinases. Sex Plant Reprod 22(4):221–228CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Yu-Jin Kim
    • 1
    • 2
  • Moon-Gi Jang
    • 1
  • Lu Zhu
    • 2
  • Jeniffer Silva
    • 1
  • Xiaolei Zhu
    • 2
  • Johan Sukweenadhi
    • 1
  • Woo-Saeng Kwon
    • 1
  • Deok-Chun Yang
    • 1
  • Dabing Zhang
    • 2
    • 3
    • 4
  1. 1.Department of Oriental Medicine Biotechnology and Graduate School of Biotechnology, College of Life ScienceKyung Hee UniversityYounginSouth Korea
  2. 2.Joint International Research Laboratory of Metabolic and Developmental SciencesShanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghaiChina
  3. 3.School of Agriculture, Food and WineUniversity of AdelaideUrrbraeAustralia
  4. 4.Key Laboratory of Crop Marker-Assisted Breeding of Huaian MunicipalityJiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental ProtectionHuaianChina

Personalised recommendations