, Volume 253, Issue 4, pp 1023–1032 | Cite as

Response of indigenously developed bacterial consortia in progressive degradation of polyvinyl chloride

  • Mohammad S Anwar
  • Anil Kapri
  • Vasvi Chaudhry
  • Aradhana Mishra
  • Mohammad W. Ansari
  • Yogesh Souche
  • Chandra S. Nautiyal
  • M. G. H. Zaidi
  • Reeta Goel
Original Article


Thermoplastic-based materials are recalcitrant in nature, which extensive use affect environmental health. Here, we attempt to compare the response of indigenously produced bacterial consortium-I and consortium-II in degrading polyvinyl chloride (PVC). These consortia were developed by using different combination of bacterial strains of Pseudomonas otitidis, Bacillus cereus, and Acanthopleurobacter pedis from waste disposal sites of Northern India after their identification via 16S rDNA sequencing. The progressive degradation of PVC by consortia was examined via scanning electron microscopy, atomic force microscopy, UV–vis, FT-IR spectra, gel permeation chromatography, and differential scanning calorimetry analysis at different incubations and time intervals. The consortium-II was superior over consortium-I in degrading the PVC. Further, the carbon source utilization analysis revealed that the extensive use of consortia has not any effect on functional diversity of native soil microbes.


Indigenous consortia Polyvinyl chloride In situ biodegradation Microbial community 



This work is supported by the Department of Biotechnology (DBT) grant to RG. MSA is grateful to Indian Council of Agricultural Research (ICAR), New Delhi for providing financial assistance as a Senior Research Fellow (SRF) during the course of study. The authors are thankful to Dr. Alok Shukla G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand for critical reading and for improving the English language quality.

Conflict of interest

The authors declare that they have no competing interest.

Supplementary material

709_2015_855_MOESM1_ESM.doc (38 kb)
ESM 1 (DOC 38.5 kb)
709_2015_855_MOESM2_ESM.doc (35 kb)
ESM 2 (DOC 35 kb)
709_2015_855_MOESM3_ESM.doc (32 kb)
ESM 3 (DOC 32 kb)
709_2015_855_MOESM4_ESM.doc (32 kb)
ESM 4 (DOC 32.5 kb)


  1. Agrawal V, Vishnoi S, Zaidi MGH, Alam S, Rai AK (2010) Synthesis and properties of [60] fullerene-polymethyl methacrylate conjugates in supercritical carbon dioxide. Int J Polym Anal Char 15(5):267–276CrossRefGoogle Scholar
  2. Ahmed J, Varshney SK, Zhang JX, Ramaswamy HS (2009) Effect of high pressure treatment on thermal properties of polylactides. J Food Engg 93:308–312CrossRefGoogle Scholar
  3. Ali MI, Ahmed S, Robson G, Javed I, Ali N, Atiq N, Hameed A (2014) Isolation and molecular characterization of polyvinyl chloride (PVC) plastic degrading fungal isolates. J Basic Microbiol 54(1):18–27CrossRefPubMedGoogle Scholar
  4. Anwar MS, Negi H, Zaidi MGH, Gupta S, Goel R (2013) Biodeterioration studies of thermoplastics in nature using indigenous bacterial consortia. Brazilian Arch Biol Technol 56:475–484CrossRefGoogle Scholar
  5. Arefian M, Zia M, Tahmourespour A, Bayat M (2013) Polycarbonate biodegradation by isolated molds using clear-zone and atomic force microscopic methods. Int J Environ Sci Technol 10:1319–1324CrossRefGoogle Scholar
  6. Barnes DAK, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environment. Phil Trans R Soc B 364:1985–1998CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bhattacharyya A, Klapperich CM (2007) Mechanical and chemical analysis of plasma and ultraviolet–ozone surface treatments for thermal bonding of polymeric microfluidic devices. Lab on a Chip 7:876–882CrossRefPubMedGoogle Scholar
  8. Booth GH, Robb JA (2007) Bacterial degradation of plasticised PVC-effect on some physical properties. Int J Appl Chemi 18:194–197CrossRefGoogle Scholar
  9. Campbell CD, Grayston SH, Hirst D (1997) Use of rhizosphere C sources in sole C source tests to discriminate soil microbial communities. J Microbiol Methods 30:33–41CrossRefGoogle Scholar
  10. Garland JL (1996) Analytical approaches to the characterization of samples 6 of microbial communities using patterns of potential C source utilization. Soil Biol Biochem 28:213–221CrossRefGoogle Scholar
  11. Garland JL, Mills A (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community level sole-carbon-source utilization. Appl Environ Microbiol 57:2351–2359PubMedPubMedCentralGoogle Scholar
  12. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Gram-positive cocci. In: Hensyl WR (ed) Bergey’s manual of determinative microbiology, 9th edn. Williams and Wilkins, Baltimore, pp 527–558Google Scholar
  13. Kapri A, Zaidi MGH, Goel R (2010) Implications of SPION and NBT nanoparticles upon in-vitro and insitu biodegradation of LDPE film. J Microbiol Biotechnol 20:1032–1041CrossRefPubMedGoogle Scholar
  14. Kawai F (2010) The biochemistry and molecular biology of xenobiotic polymer degradation by microbes. Biosci Biotechnol Biochem 74:1743–1759CrossRefPubMedGoogle Scholar
  15. Magan N, Silvia F, Catarina B (2010) Environmental factors and bioremediation of xenobiotics using white rot fungi. Mycobiol 38:238–248CrossRefGoogle Scholar
  16. Mishra A, Nautiyal CS (2009) Functional diversity of the microbial community in the rhizopshere of chickpea grown in diesel fuel-spiked soil amended with Trichoderma ressei using sole-carbon-source utilization profiles. World J Microbiol Biotechnol 25:1175–1180CrossRefGoogle Scholar
  17. Nakamiya K, Hashimoto S, Ito H, Edmonds JS, Yasuhara A, Morita M (2005) Microbial treatment of bis (2-ethylhexyl) phthalate in polyvinyl chloride with isolated bacteria. J Biosci Bioengg 99:115–119CrossRefGoogle Scholar
  18. Patil R, Bagde US (2012) Isolation of polyvinyl chloride degrading bacterial strains from environmental samples using enrichment culture technique. Afr J Biotechnol 11:7947–7956Google Scholar
  19. Ramesh S, Yi LM (2008) FT-IR spectra of plasticized high molecular weight PVC-LiCF3SO3 electrolytes. Ionics 15:413–420CrossRefGoogle Scholar
  20. Roy PK, Titus S, Surekha P, Tulsi E, Deshmukh C, Rajagopal C (2008) Degradation of abiotically aged LDPE films containing pro-oxidant by bacterial consortium. Polym Degrad Stab 93:1917–1922CrossRefGoogle Scholar
  21. Sah A, Kapri A, Zaidi MGH, Negi H, Goel R (2010) Implications of Fullerene-60 upon in vitro LDPE biodegradation. J Microbiol Biotechnol 20:908–916Google Scholar
  22. Sah A, Negi H, Kapri A, Anwar MS, Goel R (2011) Comparative shelf life and efficacy of LDPE and PVC degrading bacterial consortia under bioformulation. Ekologija 57:55–61CrossRefGoogle Scholar
  23. Sandra M, Franchetti M, Egerton TA, White JR (2010) Morphological changes in poly (caprolactone)/poly (vinyl chloride) blends caused by biodegradation. J Polym Environ 18:79–83CrossRefGoogle Scholar
  24. Soni R, Kapri A, Zaidi MGH, Goel R (2009) Comparative biodegradation studies of non-poronized and poronized LDPE using indigenous microbial consortium. J Polym Environ 17:233–239CrossRefGoogle Scholar
  25. Tribedi P, Sil AK (2013) Low-density polyethylene degradation by Pseudomonas sp. AKS2 biofilm. Environ Sci Pollut Res Int 20:4146–4153CrossRefPubMedGoogle Scholar
  26. Webb JS, Nixon M, Ian ME, Malcolm G, Geoffrey DR, Pauline SH (2000) Fungal colonization and biodeterioration of plasticized polyvinyl chloride. Appl Environ Microbiol 66:3194–3200CrossRefPubMedPubMedCentralGoogle Scholar
  27. Yadav A, Kumar A, Anupa M (2014) Retrospect and prospect of occupationally induced health hazards for plastic industry workers. Weekly Sci Res J 1:2321–7871Google Scholar
  28. Yang J, Yang Y, Wu W, Zhao J, Jiang L (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol DOI:. doi: 10.1021/es504038a Google Scholar
  29. Zeng F, Cui K, Fu J, Sheng G, Yang H (2002) Biodegradation of di(2-ethylhexyl) phthalate by Pseudomonas fluorescens FS1. Water Air Soil Pollut 140:297–305CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Mohammad S Anwar
    • 1
  • Anil Kapri
    • 1
  • Vasvi Chaudhry
    • 2
  • Aradhana Mishra
    • 2
  • Mohammad W. Ansari
    • 3
  • Yogesh Souche
    • 1
    • 4
  • Chandra S. Nautiyal
    • 2
  • M. G. H. Zaidi
    • 1
  • Reeta Goel
    • 1
  1. 1.G.B. Pant University of Agriculture and TechnologyPantnagarIndia
  2. 2.Division of Plant-Microbe Interactions, National Botanical Research InstituteLucknowIndia
  3. 3.Zakir Husain Delhi CollegeNew DelhiIndia
  4. 4.National Centre for Cell SciencesPune University CampusGaneskhindIndia

Personalised recommendations