Protoplasma

, Volume 253, Issue 3, pp 895–901 | Cite as

Molecular cytogenetic analysis of monoecious hemp (Cannabis sativa L.) cultivars reveals its karyotype variations and sex chromosomes constitution

  • Olga V. Razumova
  • Oleg S. Alexandrov
  • Mikhail G. Divashuk
  • Tatiana I. Sukhorada
  • Gennady I. Karlov
Original Article

Abstract

Hemp (Cannabis sativa L., 2n = 20) is a dioecious plant. Sex expression is controlled by an X-to-autosome balance system consisting of the heteromorphic sex chromosomes XY for males and XX for females. Genetically monoecious hemp offers several agronomic advantages compared to the dioecious cultivars that are widely used in hemp cultivation. The male or female origin of monoecious maternal plants is unknown. Additionally, the sex chromosome composition of monoecious hemp forms remains unknown. In this study, we examine the sex chromosome makeup in monoecious hemp using a cytogenetic approach. Eight monoecious and two dioecious cultivars were used. The DNA of 210 monoecious plants was used for PCR analysis with the male-associated markers MADC2 and SCAR323. All monoecious plants showed female amplification patterns. Fluorescence in situ hybridization (FISH) with the subtelomeric CS-1 probe to chromosomes plates and karyotyping revealed a lack of Y chromosome and presence of XX sex chromosomes in monoecious cultivars with the chromosome number 2n = 20. There was a high level of intra- and intercultivar karyotype variation detected. The results of this study can be used for further analysis of the genetic basis of sex expression in plants.

Keywords

Hemp Cannabis sativa Monoecious hemp Sex chromosome Karyotype 

Notes

Acknowledgments

We thank Dr I.V. Romanova for providing seeds of monoecious cultivars ‘Gentus’, ‘Diana’, ‘Ingreda’, ‘Margo’, ‘Tzivilsky Skorospeliy’ and ‘Rigs’. The reported study was partially supported by RFBR, research project #13-04-02116 and 15-04-06244.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Amaducci S, Errani M, Venturi G (1998) Comparison among monoecious and dioecious hemp (Cannabis sativa L.) genotypes: preliminary results. L’informatore agrario 26:39–42Google Scholar
  2. Badaeva ED, Badaev NS, Gill BS, Filatenko AA (1994) Intraspecific karyotype divergence in Triticum araraticum (Poaceae). Plant Syst Evol 192:117–145Google Scholar
  3. Chailakhyan MK, Khryanin VN (1978) The influence of growth regulators absorbed by the root on sex expression in hemp plants. Planta 138:181–184CrossRefPubMedGoogle Scholar
  4. Divashuk MG, Alexandrov OS, Kroupin PY, Karlov GI (2011) Molecular cytogenetic mapping of Humulus lupulus sex chromosomes. Cytogenet Genome Res 134:213–219CrossRefPubMedGoogle Scholar
  5. Divashuk MG, Alexandrov OS, Razumova OV, Kirov IV, Karlov GI (2014) Molecular cytogenetic characterization of the dioecious Cannabis sativa with an XY chromosome sex determination system. PLoS ONE 9(1):e85118. doi:10.1371/journal.pone.0085118 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  7. Faeti V, Mandolino G, Ranalli P (1996) Genetic diversity of Cannabis sativa germplasm based on RAPD markers. Plant Breed 115:367–370Google Scholar
  8. Faux AM, Berhin A, Dauguet N, Bertin P (2014) Sex chromosomes and quantitative sex expression in monoecious hemp (Cannabis sativa L.). Euphytica 196:183–197CrossRefGoogle Scholar
  9. Forapani S, Carboni A, Paoletti C, Moliterni VM, Ranalli P, Mandolino G (2001) Comparison of hemp varieties using random amplified polymorphic DNA markers. Crop Sci 41:1682–1689CrossRefGoogle Scholar
  10. Gonzalez-Garcia S, Luo L, Moreira MT, Feijoo G, Huppes G (2012) Life cycle assessment of hemp hurds use in second generation ethanol production. Biomass Bioenergy 36:268–279CrossRefGoogle Scholar
  11. Grabowska-Joachimiak A, Kula A, Książczyk T, Chojnicka J, Sliwinska E, Joachimiak AJ (2015) Chromosome landmarks and autosome-sex chromosome translocations in Rumex hastatulus, a plant with XX/XY1Y2 sex chromosome system. Chromosom Res 23:187–197CrossRefGoogle Scholar
  12. Hall J, Bhattarai SP, Midmore DJ (2012) Review of flowering control in industrial hemp. J Nat Fibers 9:23–36CrossRefGoogle Scholar
  13. Haunold A (1971) Cytology, sex expression and growth of a tetraploid x diploid cross in hop (Humulus lupulus L.). Crop Sci 11:868–871CrossRefGoogle Scholar
  14. Henegariu O, Heerema NA, Lowe Wright L, Bray-Ward P, Ward DC et al (2001) Improvements in cytogenetic slide preparation: controlled chromosome spreading, chemical aging and gradual denaturing. Cytometry 43:101–109CrossRefPubMedGoogle Scholar
  15. Heslop‐Harrison J (1956) Auxin and sexuality in Cannabis sativa. Physiol Plant 9:588–597Google Scholar
  16. Hoffmann W (1952) Die vererbung der geschlechtsformen des hanfes (Canabis sativa L.) II. Theor Appl Genet 22:147–158Google Scholar
  17. Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci U S A 101:13554–13559CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kirov I, Divashuk M, Van Laere K, Soloviev A, Khrustaleva L (2014) An easy “SteamDrop” method for high quality plant chromosome preparation. Mol Cytogenet 7(1):21CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kohiyouma M, Lee I, Iida O, Kurihara K, Yamada K, Makino Y, Sekita S, Satake M (2000) Intraspecific variation in Cannabis sativa L. based on intergenic spacer region of chloroplast DNA. Phar. Bull. Biol Pharm Bull 23:727–730CrossRefGoogle Scholar
  20. Mandolino G, Carboni A (2004) Potential of marker-assisted selection in hemp genetic improvement. Euphytica 140:107–120CrossRefGoogle Scholar
  21. Mandolino G, Carboni A, Forapani S, Faeti V, Ranalli P (1999) Identification of DNA markers linked to the male sex in dioecious hemp (Cannabis sativa L.). Theor Appl Genet 98:86–92CrossRefGoogle Scholar
  22. Menzel MY (1964) Meiotic chromosomes of monoecious Kentucky hemp (Cannabis sativa). Bull Torrey Bot Club 91:193–205CrossRefGoogle Scholar
  23. Ming R, Bendahmane A, Renner SS (2011) Sex chromosomes in land plants. Annu Rev Plant Biol 62:485–514. doi:10.1146/annurev-arplant-042110-103914 CrossRefPubMedGoogle Scholar
  24. Mohan Ram HY, Jaiswal VS (1972) Induction of male flowers on female plants of Cannabis sativa by gibberellins and its inhibition by abscisic acid. Planta 105:263–266CrossRefGoogle Scholar
  25. Moliterni VMC, Cattivelli L, Ranalli P, Mandolino G (2004) The sexual differentiation of Cannabis sativa L.: a morphological and molecular study. Euphytica 140:95–106Google Scholar
  26. Nishiyama I, Yamada I, Mazaki M (1947) Studies on artificial polyploidy plants. XI. Changes of the sex ratio in the progeny of the autotetraploid hemp. Seiken Ziho 3:144–151Google Scholar
  27. Parker JS, Clark MS (1991) Dosage sex-chromosome systems in plants. Plant Sci 80:79–92CrossRefGoogle Scholar
  28. Sakamoto K, Akiyama Y, Fukui K, Kamada H, Satoh S (1998) Characterization; genome sizes and morphology of sex chromosomes in hemp (Cannabis sativa L.). Cytologia 63:459–464CrossRefGoogle Scholar
  29. Schabelny MM (2010) Development of monoecious cultivars of south hemp. PhD thesis, Krasnodar Lukyanenko Research Institute of Agriculture, Russia (In Russian)Google Scholar
  30. Schaffner JH (1921) Influence of environment on sexual expression in hemp. Botanical Gazette 197–219Google Scholar
  31. Schultes RE, Klein WM, Plowman T, Lockwood TE (1974) Cannabis, an example of taxonomic neglect. Bot Mus Leafl Harv Univ 23:337–367Google Scholar
  32. Shahzad A (2012) Hemp fiber and its composites—a review. J Compos Mater 46:973–986CrossRefGoogle Scholar
  33. Shephard HL, Parker JS, Darby P, Ainsworth CC (2000) Sexual development and sex chromosomes in hop. New Phytol 148:397–411CrossRefGoogle Scholar
  34. Skof S, Cerenak A, Jakse J, Bohanec B, Javornik B (2012) Ploidy and sex expression in monoecious hop (Humulus lupulus). Botany 90:617–626CrossRefGoogle Scholar
  35. Struik PC, Amaducci S, Bullard MJ, Stutterheim NC, Venturi G, Cromack HTH (2000) Agronomy of fibre hemp (Cannabis sativa L.) in Europe. Ind Crop Prod 11:107–118CrossRefGoogle Scholar
  36. Torjek O, Bucherna N, Kiss E, Homoki H, Finta-Korpelova Z, Bocsa I, Nagy I, Heszky L (2002) Novel male-specific molecular markers (MADC5, MADC6) in hemp. Euphytica 127:209–218CrossRefGoogle Scholar
  37. Truta E, Olteanu N, Surdu S, Zamfirache MM, Oprica L (2007) Some aspects of sex determinism in hemp. Analele Stiintificeale Universitatii “Alexandru Ioan Cuza”, Sectiunea Genetica si Biologie Moleculara VIII:31–39Google Scholar
  38. van der Werf HMG, Mathijssen EWJM, Haverkort AJ (1996) The potential of hemp (Cannabis sativa L.) for sustainable fibre production: a crop physiological appraisal. Ann Appl Biol 129:109–123CrossRefGoogle Scholar
  39. Vyskot B, Hobza R (2004) Gender in plants: sex chromosomes are emerging from the fog. Trends Genet 20:432–438CrossRefPubMedGoogle Scholar
  40. Westergaard M (1958) The mechanism of sex determination in dieocious flowering plants. Adv Genet 9:217–281CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Olga V. Razumova
    • 1
  • Oleg S. Alexandrov
    • 1
  • Mikhail G. Divashuk
    • 1
  • Tatiana I. Sukhorada
    • 2
  • Gennady I. Karlov
    • 1
  1. 1.Center for Molecular BiotechnologyRussian State Agrarian University—MTAAMoscowRussia
  2. 2.Krasnodar Lukyanenko Research Institute of Agriculture, C/U KNIISHKrasnodarRussia

Personalised recommendations