, Volume 253, Issue 2, pp 503–515 | Cite as

Inhibition of imiquimod-induced psoriasis-like dermatitis in mice by herbal extracts from some Indian medicinal plants

  • Neha Arora
  • Kavita Shah
  • Shashi Pandey-Rai
Original Article


Psoriasis is a chronic autoimmune human skin disorder that is characterized by excessive proliferation of keratinocytes, scaly plaques, severe inflammation and erythema. The pathophysiology of psoriasis involves interplay between epidermal keratinocytes, T lymphocytes, leukocytes and vascular endothelium. Increased leukocyte recruitment and elevated levels of cytokines, growth factors and genetic factors like interleukin (IL)-1β, IL-6, IL-17, IL-22, IL-23, tumour necrosis factor (TNF)-α, interferon (IFN)-γ, transforming growth factor (TGF)-β, toll-like receptor (TLR)-2, signal transducer and activator of transcription (STAT-3), 15-lipoxygenase (LOX)-2, coiled-coil alpha-helical rod protein 1 (CCHCR1), steroidogenic acute regulatory protein (StAR) and vitamin D receptor (VDR) are the most critical factors governing the exacerbation of psoriasis. In the present study, an attempt was made to elucidate the preventive role of herbal extracts of four dermo-protective Ayurvedic plants, Tinospora cordifolia (TC), Curcuma longa (CL), Celastrus paniculatus (CP) and Aloe vera (AV), against psoriasis-like dermatitis. Parkes (P) strain mice were initially induced with psoriasis-like dermatitis using topical application of imiquimod (IMQ, 5 %), followed by subsequent treatment with the herbal extracts to examine their curative effect on the psoriasis-like dermatitis-induced mice. The extracts were orally/topically administered to mice according to their ED/LD50 doses. Phenotypical observations, histological examinations, and semi-quantitative reverse transcription PCR (RT-PCR) analyses of the skin and blood samples of the control, IMQ-treated and herbal extract-treated psoriasis-like dermatitis-induced mice lead to the conclusion that the combination extract from all the plants was instrumental in downregulating the overexpressed cytokines, which was followed by the CL extract. Moreover, lesser yet positive response was evident from CP and TC extracts. The results suggest that these plants can prove to have tremendous preventive potential against the disease and can open the way to new therapeutic strategies for psoriasis treatment.


Psoriasis-like dermatitis Cytokines Interleukins Histopathology Semi-quantitative RT-PCR Ayurvedic plants 







Tumour necrosis factor




Transforming growth factor


Toll-like receptor




Signal transducer and activator of transcription


Coiled-coil alpha-helical rod protein 1


Steroidogenic acute regulatory protein


Vitamin D receptor



The authors are thankful to DBT (Department of Biotechnology), Govt. of India, for financial support (Grant No. BT/PR13597/GBD/27/274/201). Authors sincerely acknowledge Prof. Rajiva Raman, Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, for providing mice and animal house facility for conducting in vivo studies. NA is sponsored by UGC (University Grants Commission), India, in the form of a fellowship.

Conflict of interest

The authors state no conflict of interest.


  1. Abe Y, Hashimoto S, Horie T (1999) Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages. Pharmacol Res 39:411–17CrossRefGoogle Scholar
  2. Aggarwal BB, Prasad S, Reuter S et al (2011) Identification of novel anti-inflammatory agents from ayurvedic medicine for prevention of chronic diseases: “reverse pharmacology” and “bedside to bench” approach. Curr Drug Targets 12(11):1595–1653CrossRefPubMedPubMedCentralGoogle Scholar
  3. Albanesi C, Scarponi C, Giustizieri ML, Girolomoni G (2005) Keratinocytes in inflammatory skin diseases. Curr Drug Targets Inflamm Allergy 4:329–34CrossRefPubMedGoogle Scholar
  4. Alexandrow MG, Song LJ, Altiok S et al (2012) Curcumin: a novel Stat3 pathway inhibitor for chemoprevention of lung cancer. Eur J Cancer Prev 21(5):407–412CrossRefPubMedPubMedCentralGoogle Scholar
  5. Aliahmadi E, Gramlich R, Grützkau A et al (2009) TLR2-activated human langerhans cells promote Th17 polarization via IL-1beta, TGF-beta and IL-23. Eur J Immunol 39(5):1221–30CrossRefPubMedGoogle Scholar
  6. Arora N, Rai SP (2012) Celastrus paniculatus, an endangered Indian medicinal plant with miraculous cognitive and other therapeutic properties: an overview. Int J Pharm Bio Sci 3(3):290–303Google Scholar
  7. Atal CK, Sharma ML, Kaul A, Khajuria A (1986) Immunomodulating agents of plant origin. I: preliminary screening. J Ethnopharmacol 18(2):133–41CrossRefPubMedGoogle Scholar
  8. Brash AR, Boeglin WE, Chang MS (1997) Discovery of a second 15S-lipoxygenase in humans. Proc Natl Acad Sci U S A 94:6148–52CrossRefPubMedPubMedCentralGoogle Scholar
  9. Brash AR, Jisaka M, Boeglin WE, Chang MS (1999) Molecular cloning of a second human 15S-lipoxygenase and its murine homologue, an 8S-lipoxygenase. Their relationship to other mammalian lipoxygenases. Adv Exp Med Biol 447:29–36CrossRefPubMedGoogle Scholar
  10. Camp RD, Mallet AI, Woollard PM et al (1983) The identification of hydroxy fatty acids in psoriatic skin. Prostaglandins 26(3):431–47CrossRefPubMedGoogle Scholar
  11. Carrasco S, Neves FS, Fonseca MH et al (2011) Toll-like receptor (TLR) 2 is upregulated on peripheral blood monocytes of patients with psoriatic arthritis: a role for a gram-positive inflammatory trigger? Clin Exp Rheumatol 29(6):958–62PubMedGoogle Scholar
  12. Da Rocha MD, Viegas FP, Campos HC et al (2011) The role of natural products in the discovery of new drug candidates for the treatment of neurodegenerative disorders II: Alzheimer’s disease. CNS Neurol Disord Drug Targets 10(2):251–270CrossRefPubMedGoogle Scholar
  13. Debets R, Hegmans JP, Croughs P et al (1997) The IL-1 system in psoriatic skin: IL-1 antagonist sphere of influence in lesional psoriatic epidermis. J Immunol 158:2955–63PubMedGoogle Scholar
  14. Di Cesare A, Di Meglio P, Nestle FO (2009) The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Invest Dermatol 129(6):1339–50CrossRefPubMedGoogle Scholar
  15. Fitch E, Harper E, Skorcheva I et al (2007) Pathophysiology of psoriasis: recent advances on IL-23 and Th17 cytokines. Curr Rheumatol Rep 9:461–67CrossRefPubMedPubMedCentralGoogle Scholar
  16. Flisiak I, Chodynicka B, Porebski P, Flisiak R (2002) Association between psoriasis severity and transforming growth factor beta (1) and beta (2) in plasma and scales from psoriatic lesions. Cytokine 19:121–5CrossRefPubMedGoogle Scholar
  17. Gheorghe KR, Korotkova M, Catrina AI et al (2009) Expression of 5-lipoxygenase and 15-lipoxygenase in rheumatoid arthritis synovium and effects of intraarticular glucocorticoids. Arthritis Res Ther 11(3):R83CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ghoreschi K, Weigert C, Röcken M (2007) Immunopathogenesis and role of T cells in psoriasis. Clin Dermatol 25(6):574–580CrossRefPubMedGoogle Scholar
  19. Giannopoulos PF, Joshi YB, Chu J, Praticò D (2013) The 12-15-lipoxygenase is a modulator of Alzheimer’s-related tau pathology in vivo. Aging Cell 12(6):1082–90CrossRefPubMedGoogle Scholar
  20. Grossman RM, Krueger J, Yourish F et al (1989) Interleukin-6 is expressed in high levels in psoriatic skin and stimulates proliferation of cultured human keratinocytes. Proc Natl Acad Sci U S A 86:6367–71CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hagan SN, Murphy EW, Shelley LM (1967) Extraction of lipids from raw beef lean by using various solvent systems. J Assoc Off Anal Chem 50:250–55Google Scholar
  22. Heidenreich R, Röcken M, Ghoreschi K (2009) Angiogenesis drives psoriasis pathogenesis. Int J Exp Pathol 90(3):232–48CrossRefPubMedPubMedCentralGoogle Scholar
  23. Heidt M, Furstenberger G, Vogel S et al (2000) Diversity of murine lipoxygenases: identification of a subfamily of epidermal isoenzymes exhibiting a differentiation-dependent mRNA expression pattern. Lipids 35:701–7CrossRefPubMedGoogle Scholar
  24. Honma M, Minami-Hori M, Takahashi H, Iizuka H (2012) Podoplanin expression in wound and hyperproliferative psoriatic epidermis: regulation by TGF-β and STAT-3 activating cytokines, IFN-γ, IL-6, and IL-22. J Dermatol Sci 65(2):134–140CrossRefPubMedGoogle Scholar
  25. Huang MT, Ma W, Yen P et al (1997) Inhibitory effects of topical application of low doses of curcumin on 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion and oxidized DNA bases in mouse epidermis. Carcinogenesis 18(1):83–88CrossRefPubMedGoogle Scholar
  26. Jain BN, Jain VK, Shete A (2010) Antipsychotic activity of aqueous ethanolic extract of tinospora cordifolia in amphetamine challenged mice model. J Adv Pharm Technol Res 1(1):30–33PubMedPubMedCentralGoogle Scholar
  27. Kastelein RA, Hunter CA, Cua DJ (2007) Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu Rev Immunol 25:221–42CrossRefPubMedGoogle Scholar
  28. Kono T, Kondo S, Pastore S et al (1994) Effects of a novel topical immunomodulator, imiquimod, on keratinocyte cytokine gene expression. Lymphokine Cytokine Res 13:71–76PubMedGoogle Scholar
  29. Kupper TS, Min K, Sehgal PB et al (1989) Production of IL-6 by keratinocytes: implications for epidermal inflammation and immunity. Ann NY Acad Sci 557:454–64CrossRefPubMedGoogle Scholar
  30. Lee E, Trepicchio WL, Oestreicher JL et al (2004) Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med 199:125–30CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lekha G, Mohan K, Samy IA (2010) Effect of Celastrus paniculatus seed oil (Jyothismati oil) on acute and chronic immobilization stress induced in swiss albino mice. Pharmacognosy Res 2(3):169–74CrossRefPubMedPubMedCentralGoogle Scholar
  32. Li AG, Wang D, Feng XH, Wang XJ (2004) Latent TGFbeta1 overexpression in keratinocytes results in a severe psoriasis-like skin disorder. EMBO J 23:1770–81CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lowes MA, Bowcock AM, Krueger JG (2007) Pathogenesis and therapy of psoriasis. Nature 445:866–73CrossRefPubMedGoogle Scholar
  34. Lu J, Xiao WP, Geng ZL, Liu D, Wang YF (2012) Effect of aloe polysaccharides pretreatment on the cerebral inflammatory response and lipid peroxidation in severe hemorrhagic shock rats first entering high altitude. Zhonghua Wai Ke Za Zhi 50(7):655–8PubMedGoogle Scholar
  35. Lukita-Atmadja W, Ito Y, Baker GL, McCuskey RS (2002) Effect of curcuminoids as anti-inflammatory agents on the hepatic microvascular response to endotoxin. Shock 17:399–403CrossRefPubMedGoogle Scholar
  36. Nair PK, Rodriguez S, Ramachandran R et al (2004) Immune stimulating properties of a novel polysaccharide from the medicinal plant Tinospora cordifolia. Int Immunopharmacol 4(13):1645–59CrossRefPubMedGoogle Scholar
  37. Nickoloff BJ, Nestle FO (2004) Recent insights into the immunopathogenesis of psoriasis provide new therapeutic opportunities. J Clin Invest 113(12):1664–75CrossRefPubMedPubMedCentralGoogle Scholar
  38. Niu G, Wright KL, Huang M et al (2002) Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21(13):2000–8CrossRefPubMedGoogle Scholar
  39. Palamara F, Meindl S, Holcmann M et al (2004) Identification and characterization of pDC-like cells in normal mouse skin and melanomas treated with imiquimod. J Immunol 173:3051–61CrossRefPubMedGoogle Scholar
  40. Palfreeman AC, McNamee KE, McCann FE (2013) New developments in the management of psoriasis and psoriatic arthritis: a focus on apremilast. Drug Des Devel Ther 7:201–10CrossRefPubMedPubMedCentralGoogle Scholar
  41. Piskin G, Sylva-Steenland RM, Bos JD, Teunissen MB (2006) In vitro and in situ expression of IL-23 by keratinocytes in healthy skin and psoriasis lesions: enhanced expression in psoriatic skin. J Immunol 176(3):1908–15CrossRefPubMedGoogle Scholar
  42. Popuri AK, Pagala B (2013) Extraction of curcumin from turmeric roots. Int J Innov Res Studies 2(5):289–99Google Scholar
  43. Rajan N, Langtry JA (2006) Generalized exacerbation of psoriasis associated with imiquimod cream treatment of superficial basal cell carcinomas. Clin Exp Dermatol 31:140–41CrossRefPubMedGoogle Scholar
  44. Rojas Anaya E, Loza-Rubio E, Banda Ruiz VM, Hernández Baumgarten E (2006) Use of reverse transcription-polymerase chain reaction to determine the stability of rabies virus genome in brains kept at room temperature. J Vet Diagn Invest 18(1):98–101CrossRefPubMedGoogle Scholar
  45. Sano S, Chan KS, Carbajal S et al (2005) Stat3 links activated keratinocytes and immunocytes required for development of psoriasis in a novel transgenic mouse model. Nat Med 11:43–49CrossRefPubMedGoogle Scholar
  46. Schneider C, Strayhorn WD, Brantley DM et al (2004) Upregulation of 8-lipoxygenase in the dermatitis of IkappaB-alpha-deficient mice. J Invest Dermatol 122:691–98CrossRefPubMedGoogle Scholar
  47. Schön M, Behmenburg C, Denzer D, Schön MP (2001) Pathogenic function of IL-1 beta in psoriasiform skin lesions of flaky skin (fsn/fsn) mice. Clin Exp Immunol 123(3):505–10CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sengupta M, Sharma GD, Chakraborty B (2011) Effect of aqueous extract of Tinospora cordifolia on functions of peritoneal macrophages isolated from CCl4 intoxicated male albino mice. BMC Complement Altern Med 11:102CrossRefPubMedPubMedCentralGoogle Scholar
  49. Setsu N, Matsuura H, Hirakawa et al (2006) Interferon-gamma-induced 15-lipoxygenase-2 expression in normal human epidermal keratinocytes and a pathogenic link to psoriasis vulgaris. Eur J Dermatol 16(2):141–5PubMedGoogle Scholar
  50. Skrzypczak-Jankun E, McCabe NP, Selman SH, Jankun J (2000) Curcumin inhibits lipoxygenase by binding to its central cavity: theoretical and X-ray evidence. Int J Mol Med 6:521–6PubMedGoogle Scholar
  51. Spelman K, Burns J, Nichols D et al (2006) Modulation of cytokine expression by traditional medicines: a review of herbal immunomodulators. Altern Med Rev 11(2):128–50PubMedGoogle Scholar
  52. Sugawara T, Shimizu H, Hoshi N et al (2003) Steroidogenic acute regulatory protein-binding protein cloned by a yeast two-hybrid system. J Biol Chem 278:42487–94CrossRefPubMedGoogle Scholar
  53. Sun J, Zhao Y, Hu J (2013) Curcumin inhibits imiquimod-induced psoriasis-like inflammation by inhibiting IL-1beta and IL-6 production in mice. PLoS One 8(6), e67078CrossRefPubMedPubMedCentralGoogle Scholar
  54. Syed TA, Cheeman KM, Ahmad SA, Holt AH (1996) Aloe vera extract 0.5% in hydrophilic cream versus Aloe vera gel for the management of genital herpes in males. A placebo-controlled, double blind, comparative study. J Eur Acad Dermatol Venereol 7:294–95Google Scholar
  55. Szeimies RM, Gerritsen MJ, Gupta G et al (2004) Imiquimod 5% cream for the treatment of actinic keratosis: results from a phase III, randomized, double-blind, vehicle-controlled, clinical trial with histology. J Am Acad Dermatol 51:547–55CrossRefPubMedGoogle Scholar
  56. Tervaniemi MH, Siitonen HA, Soderhall C et al (2012) Centrosomal localization of the psoriasis candidate gene product, CCHCR1, supports a role in cytoskeletal organization. PLoS One 7(11), e49920CrossRefPubMedPubMedCentralGoogle Scholar
  57. Teunissen MBM, Koomen CW, de Waal MR et al (1998) Interleukin-17 and interferon-γ synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. J Invest Dermatol 111(4):645–49CrossRefPubMedGoogle Scholar
  58. Tiala I, Suomela S, Huuhtanen J et al (2007) The CCHCR1 (HCR) gene is relevant for skin steroidogenesis and downregulated in cultured psoriatic keratinocytes. J Mol Med (Berl) 85(6):589–601CrossRefGoogle Scholar
  59. Tiala I, Wakkinen J, Suomela S et al (2008) The PSORS1 locus gene CCHCR1 affects keratinocyte proliferation in transgenic mice. Hum Mol Genet 17(7):1043–51CrossRefPubMedGoogle Scholar
  60. Van der Fits L, Mourits S, Voerman JS et al (2009) Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol 182(9):5836–45CrossRefPubMedGoogle Scholar
  61. Vanderhoek JY, Bailey JM (1984) Activation of a 15-lipoxygenase/leukotriene pathway in human polymorphonuclear leukocytes by the anti-inflammatory agent ibuprofen. J Biol Chem 259(11):6752–6PubMedGoogle Scholar
  62. Wilson NJ, Boniface K, Chan JR et al (2007) Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 8:950–57CrossRefPubMedGoogle Scholar
  63. Wolk K, Kunz S, Witte E et al (2004) IL-22 increases the innate immunity of tissues. Immunity 21:241CrossRefPubMedGoogle Scholar
  64. Wu JK, Siller G, Strutton G (2004) Psoriasis induced by topical imiquimod. Australas J Dermatol 45:47–50CrossRefPubMedGoogle Scholar
  65. Zaba LC, Fuentes-Duculan J, Eungdamrong NJ et al (2009) Psoriasis is characterized by accumulation of immunostimulatory and Th1/Th17 cell-polarizing myeloid dendritic cells. J Invest Dermatol 129(1):79–88CrossRefPubMedPubMedCentralGoogle Scholar
  66. Zheng Y, Danilenko DM, Valdez P et al (2007) Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445:648–51CrossRefPubMedGoogle Scholar
  67. Zhu JW, Wu XJ, Lu ZF et al (2013) Role of VEGF receptors in normal and psoriatic human keratinocytes: evidence from irradiation with different UV sources. PLoS One 8(1), e55463CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Laboratory of Morphogenesis, Centre of Advanced Study in Botany, Faculty of ScienceBanaras Hindu UniversityVaranasiIndia
  2. 2.Institute of Environment and Sustainable DevelopmentBanaras Hindu UniversityVaranasiIndia

Personalised recommendations