Advertisement

Protoplasma

, Volume 253, Issue 1, pp 175–184 | Cite as

Biological potential of nanomaterials strongly depends on the suspension media: experimental data on the effects of fullerene C60 on membranes

  • Barbara Drašler
  • Damjana Drobne
  • Nataša Poklar Ulrih
  • Ajda Ota
Original Article

Abstract

Fullerenes (C60) are some of the most promising carbon nanomaterials to be used for medical applications as drug delivery agents. Computational and experimental studies have proposed their ability to enter cells by penetrating lipid bilayers. The aim of our study was to provide experimental evidence on whether pristine C60 in physiological media could penetrate cell membranes. The effect was tested on phospholipid vesicles (liposomes) composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, and validated on isolated human red blood cells (RBCs). We incubated the liposomes in an aqueous suspension of C60 and dissolved the lipids and C60 together in chloroform and subsequently formatted the liposomes. By differential scanning calorimetry measurements, we assessed the effect of C60 on the phospholipid thermal profile. The latter was not affected after the incubation of liposomes in the C60 suspension; also, a shape transformation of RBCs did not occur. Differently, by dispersing both C60 and the phospholipids in chloroform, we confirmed the possible interaction of C60 with the bilayer. We provide experimental data suggesting that the suspension medium is an important factor in determining the C60-membrane interaction, which is not always included in computational studies. Since the primary particle size is not the only crucial parameter in C60-membrane interactions, it is important to determine the most relevant characteristics of their effects on membranes.

Keywords

Fullerene C60 Liposomes Human erythrocytes Experimental medium 

Notes

Acknowledgments

The research was supported by the Ministry of Education, Science, Culture and Sport of Republic of Slovenia in the scope of the grant “Innovative scheme of co-funding doctoral studies promoting co-operation with the economy and solving of contemporary social challenges” in the scope of the Grant No. 160-21. This project has received funding from the Slovenian Research Agency (ARRS) within Grant Agreement No. J1-4109 and Research Program P4-0121. We want to thank Prof. Dr. Darko Makovec from the Jožef Štefan Institute for the characterization of C60 suspensions. We want to express our gratitude to Dr. Matej Hočevar from the Institute of Metals and Technology, for his assistance with scanning electron microscopy.

Research involving human participants

This study involved human subjects (RBCs) and was approved by the National Medical Ethics Committee of Slovenia, No. 117/02/10.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Andrievsky GV, Kosevich MV, Vovk OM, Shelkovsky VS, Vashchenko LA (1995) On the Production of an Aqueous Colloidal Solution of Fullerenes Journal of the Chemical Society-Chemical Communications:1281-1282Google Scholar
  2. Asharani PV, Sethu S, Vadukumpully S, Zhong SP, Lim CT, Hande MP, Valiyaveettil S (2010) Investigations on the structural damage in human erythrocytes exposed to silver, gold, and platinum nanoparticles. Adv Funct Mater 20:1233-–1242. doi: 10.1002/adfm.200901846 CrossRefGoogle Scholar
  3. Bakry R, Vallant RM, Najam-Ul-Haq M, Rainer M, Szabo Z, Huck CW, Bonn GK (2007) Medicinal applications of fullerenes. Int J Nanomed 2:639–649Google Scholar
  4. Banaszak MMH (2009) Nanotoxicology: a personal perspective. Wiley Interdiscip Rev: Nanomedicine and Nanobiotechnology 1:353–359Google Scholar
  5. Boggs JM (1987) Lipid intermolecular hydrogen-bonding—influence on structural organization and membrane-function. Biochim Biophys Acta 906:353–404. doi: 10.1016/0304-4157(87)90017-7 PubMedCrossRefGoogle Scholar
  6. Bouropoulos N et al (2012) Probing the perturbation of lecithin bilayers by unmodified C-60 fullerenes using experimental methods and computational simulations. J Phys Chem C 116:3867–3874. doi: 10.1021/Jp206221a CrossRefGoogle Scholar
  7. Bozdaganyan ME, Orekhov PS, Shaytan AK, Shaitan KV (2014) Comparative Computational Study of Interaction of C-60-Fullerene and Tris-Malonyl-C-60-Fullerene Isomers with Lipid Bilayer: Relation to Their Antioxidant Effect Plos One 9 doi  10.1371/journal.pone.0102487
  8. Crane M, Handy RD, Garrod J, Owen R (2008) Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles. Ecotoxicology 17:421–437. doi: 10.1007/s10646-008-0215-z PubMedCrossRefGoogle Scholar
  9. Dellinger A, Zhou ZG, Connor J, Madhankumar AB, Pamujula S, Sayes CM, Kepley CL (2013) Application of fullerenes in nanomedicine: an update. Nanomedicine-UK 8:1191–1208. doi: 10.2217/Nnm.13.99 CrossRefGoogle Scholar
  10. DeVane R, Jusufi A, Shinoda W, Chiu CC, Nielsen SO, Moore PB, Klein ML (2010) Parameterization and application of a coarse grained force field for benzene/fullerene interactions with lipids. J Phys Chem B 114:16364–16372. doi: 10.1021/Jp1070264 PubMedCrossRefGoogle Scholar
  11. Drasler B et al (2014) Effects of magnetic cobalt ferrite nanoparticles on biological and artificial lipid membranes. Int J Nanomed 9:1559–1581. doi: 10.2147/Ijn.S57671 CrossRefGoogle Scholar
  12. Fortner JD et al (2005) C-60 in water: nanocrystal formation and microbial response. Environ Sci Technol 39:4307–4316PubMedCrossRefGoogle Scholar
  13. Frascione D et al (2012) Ultrasmall superparamagnetic iron oxide (USPIO)-based liposomes as magnetic resonance imaging probes. Int J Nanomed 7:2349–2359. doi: 10.2147/Ijn.S30617 Google Scholar
  14. Gmajner D, Grabnar PA, Znidaric MT, Strus J, Sentjurc M, Ulrih NP (2011) Structural characterization of liposomes made of diether archaeal lipids and dipalmitoyl-L-alpha-phosphatidylcholine. Biophys Chem 158:150–156. doi: 10.1016/j.bpc.2011.06.014 PubMedCrossRefGoogle Scholar
  15. Grebowski J, Krokosz A, Puchala M (2013) Fullerenol C(6)(0)(OH)(3)(6) could associate to band 3 protein of human erythrocyte membranes. Biochim Biophys Acta 1828:2007–2014. doi: 10.1016/j.bbamem.2013.05.009 PubMedCrossRefGoogle Scholar
  16. Hagerstrand H, Danieluk M, Bobrowska-Hagerstrand M, Iglic A, Wrobel A, Isomaa B, Nikinmaa M (2000) Influence of band 3 protein absence and skeletal structures on amphiphile- and Ca2+-induced shape alterations in erythrocytes: a study with lamprey (Lampetra fluviatilis), trout (Oncorhynchus mykiss) and human erythrocytes. BBA-Biomembr 1466:125–138. doi: 10.1016/S0005-2736(00)00184-X CrossRefGoogle Scholar
  17. Han YC, Wang XY, Dai HL, Li SP (2012) Nanosize and surface charge effects of hydroxyapatite nanoparticles on red blood cell suspensions. Acs Appl Mater Inter 4:4616–4622. doi: 10.1021/Am300992x CrossRefGoogle Scholar
  18. Huang WD, Qian KX, Tan HQ, Li WZ (1996) The effect of buckyball C-60 irradiation on the fluidity of erythrocyte membranes. Acta Bioch Bioph Sin 28:321–324Google Scholar
  19. Iglic A (1997) A possible mechanism determining the stability of spiculated red blood cells. J Biomech 30:35–40. doi: 10.1016/S0021-9290(96)00100-5 PubMedCrossRefGoogle Scholar
  20. Ikeda A, Kiguchi K, Shigematsu T, Nobusawa K, Kikuchi J, Akiyama M (2011) Location of [60]fullerene incorporation in lipid membranes. Chem Commun 47:12095–12097. doi: 10.1039/C1cc14650e CrossRefGoogle Scholar
  21. Ikeda A et al (2012) Advantages and potential of lipid-membrane-incorporating fullerenes prepared by the fullerene-exchange. Method Chem-Asian J 7:605–613. doi: 10.1002/asia.201100792 PubMedCrossRefGoogle Scholar
  22. Ikeda A, Kiguchi K, Hida T, Yasuhara K, Nobusawa K, Akiyama M, Shinoda W (2014) [70]Fullerenes Assist the Formation of Phospholipid Bice Iles at Low Lipid Concentrations Langmuir 30:12315–12320. doi: 10.1021/La503732q
  23. Ikeda A et al (2005) Efficient photocleavage of DNA utilising water-soluble lipid membrane-incorporated [60]fullerenes prepared using a [60]fullerene exchange method. Org Biomol Chem 3:2907–2909. doi: 10.1039/B507954c PubMedCrossRefGoogle Scholar
  24. Kato S, Kikuchi R, Aoshima H, Saitoh Y, Miwa N (2010) Defensive effects of fullerene-C60/liposome complex against UVA-induced intracellular reactive oxygen species generation and cell death in human skin keratinocytes HaCaT, associated with intracellular uptake and extracellular excretion of fullerene-C60. J Photoch Photobio B 98:144–151. doi: 10.1016/j.jphotobiol.2009.11.015 CrossRefGoogle Scholar
  25. Kroto HW, Heath JR, Obrien SC, Curl RF, Smalley RE (1985) C-60—Buckminsterfullerene. Nature 318:162–163. doi: 10.1038/318162a0 CrossRefGoogle Scholar
  26. Leonenko ZV, Finot E, Ma H, Dahms TES, Cramb DT (2004) Investigation of temperature-induced phase transitions in DOPC and DPPC phospholipid bilayers using temperature-controlled scanning force microscopy. Biophys J 86:3783–3793. doi: 10.1529/biophysj.103.036681 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Leroueil PR, Hong SY, Mecke A, Baker JR, Orr BG, Holl MMB (2007) Nanoparticle interaction with biological membranes: does nanotechnology present a janus face? Accounts Chem Res 40:335–342CrossRefGoogle Scholar
  28. Li SQ, Zhu RR, Zhu H, Xue M, Sun XY, Yao SD, Wang SL (2008) Nanotoxicity of TiO(2) nanoparticles to erythrocyte in vitro. Food Chem Toxicol 46:3626–3631. doi: 10.1016/j.fct.2008.09.012 PubMedCrossRefGoogle Scholar
  29. Lichtenberg D, Menashe M, Donaldson S, Biltonen RL (1984) Thermodynamic characterization of the pretransition of unilamellar dipalmitoyl-phosphatidylcholine vesicles. Lipids 19:395–400. doi: 10.1007/Bf02537400 PubMedCrossRefGoogle Scholar
  30. Lyon DY, Adams LK, Falkner JC, Alvarez PJJ (2006) Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ Sci Technol 40:4360–4366PubMedCrossRefGoogle Scholar
  31. Mesaric T et al (2013) Effects of surface curvature and surface characteristics of carbon-based nanomaterials on the adsorption and activity of acetylcholinesterase. Carbon 62:222–232. doi: 10.1016/j.carbon.2013.05.060 CrossRefGoogle Scholar
  32. Monticelli L, Salonen E, Ke PC, Vattulainen I (2009) Effects of carbon nanoparticles on lipid membranes: a molecular simulation perspective. Soft Matter 5:4433–4445. doi: 10.1039/B912310e CrossRefGoogle Scholar
  33. Peetla C, Stine A, Labhasetwar V (2009) Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery. Mol Pharm 6:1264–1276PubMedPubMedCentralCrossRefGoogle Scholar
  34. Poklar N, Fritz J, Macek P, Vesnaver G, Chalikian TV (1999) Interaction of the pore-forming protein equinatoxin II with model lipid membranes: A calorimetric and spectroscopic study. Biochemistry-Us 38:14999–15008. doi: 10.1021/Bi9916022 CrossRefGoogle Scholar
  35. Prato M (1997) [60] Fullerene chemistry for materials science applications. J Mater Chem 7:1097–1109. doi: 10.1039/A700080d CrossRefGoogle Scholar
  36. Qiao R, Roberts AP, Mount AS, Klaine SJ, Ke PC (2007) Translocation of C-60 and its derivatives across a lipid bilayer. Nano Lett 7:614–619PubMedCrossRefGoogle Scholar
  37. Riske KA, Barroso RP, Vequi-Suplicy CC, Germano R, Henriques VB, Lamy MT (2009) Lipid bilayer pre-transition as the beginning of the melting process. BBA-Biomembr 1788:954–963. doi: 10.1016/j.bbamem.2009.01.007 CrossRefGoogle Scholar
  38. Rossi G, Barnoud J, Monticelli L (2013) Partitioning and solubility of C-60 fullerene in lipid membranes Phys Scripta 87 doi  10.1088/0031-8949/87/05/058503
  39. Rudenko SV (2010) Erythrocyte morphological states, phases, transitions and trajectories. BBA-Biomembr 1798:1767–1778. doi: 10.1016/j.bbamem.2010.05.010 CrossRefGoogle Scholar
  40. Ruoff RS, Tse DS, Malhotra R, Lorents DC (1993) Solubility of C-60 in a Variety of Solvents. J Phys Chem-Us 97:3379–3383CrossRefGoogle Scholar
  41. Salonen E, Lin S, Reid ML, Allegood M, Wang X, Rao AM, Vattulainen I, Ke PC (2008) Real-time translocation of fullerene reveals cell contraction. Small 4:1986–1992. doi: 10.1002/smll.200701279 PubMedCrossRefGoogle Scholar
  42. Schulz M, Olubummo A, Binder WH (2012) Beyond the lipid-bilayer: interaction of polymers and nanoparticles with membranes. Soft Matter 8:4849–4864. doi: 10.1039/C2sm06999g CrossRefGoogle Scholar
  43. Shinoda W, DeVane R, Klein ML (2012) Computer simulation studies of self-assembling macromolecules. Curr Opin Struc Biol 22:175–186. doi: 10.1016/j.sbi.2012.01.011 CrossRefGoogle Scholar
  44. Spohn P, Hirsch C, Hasler F, Bruinink A, Krug HF, Wick P (2009) C-60 fullerene: a powerful antioxidant or a damaging agent? The importance of an in-depth material characterization prior to toxicity assays. Environ Pollut 157:1134–1139. doi: 10.1016/j.envpol.2008.08.013 PubMedCrossRefGoogle Scholar
  45. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6:12–21. doi: 10.1002/smll.200901158 PubMedCrossRefGoogle Scholar
  46. Wang B, Zhang LF, Bae SC, Granick S (2008) Nanoparticle-induced surface reconstruction of phospholipid membranes. Proc Natl Acad Sci U S A 105:18171–18175. doi: 10.1073/pnas.0807296105 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Wong-Ekkabut J, Baoukina S, Triampo W, Tang IM, Tieleman DP, Monticelli L (2008) Computer simulation study of fullerene translocation through lipid membranes. Nat Nanotechnol 3:363–368PubMedCrossRefGoogle Scholar
  48. Xia XR et al (2011) Mapping the surface adsorption forces of nanomaterials in biological systems. ACS Nano 5:9074–9081. doi: 10.1021/Nn203303c PubMedPubMedCentralCrossRefGoogle Scholar
  49. Zhang X, Zhang Y, Zheng Y, Wang B (2013) Mechanical characteristics of human red blood cell membrane change due to C60 nanoparticle infiltration. Phys Chem Chem Phys 15:2473–2481. doi: 10.1039/c2cp42850d PubMedCrossRefGoogle Scholar
  50. Zupanc J et al (2012) Experimental evidence for the interaction of C-60 fullerene with lipid vesicle membranes. Carbon 50:1170–1178. doi: 10.1016/j.carbon.2011.10.030 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Barbara Drašler
    • 1
  • Damjana Drobne
    • 1
  • Nataša Poklar Ulrih
    • 2
  • Ajda Ota
    • 2
  1. 1.Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Department of Food Science and Technology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations