, Volume 253, Issue 1, pp 201–209 | Cite as

Chromosomal localization of 45S rDNA, sex-specific C values, and heterochromatin distribution in Coccinia grandis (L.) Voigt

  • Biplab Kumar Bhowmick
  • Masashi Yamamoto
  • Sumita Jha
Short Communication


Coccinia grandis is a widely distributed dioecious cucurbit in India, with heteromorphic sex chromosomes and X-Y sex determination mode. The present study aids in the cytogenetic characterization of four native populations of this plant employing distribution patterns of 45S rDNA on chromosomes and guanine-cytosine (GC)-rich heterochromatin in the genome coupled with flow cytometric determination of genome sizes. Existence of four nucleolar chromosomes could be confirmed by the presence of four telomeric 45S rDNA signals in both male and female plants. All four 45S rDNA sites are rich in heterochromatin evident from the co-localization of telomeric chromomycin A (CMA)+ve signals. The size of 45S rDNA signal was found to differ between the homologues of one nucleolar chromosome pair. The distribution of heterochromatin is found to differ among the male and female populations. The average GC-rich heterochromatin content of male and female populations is 23.27 and 29.86 %, respectively. Moreover, the male plants have a genome size of 0.92 pg/2C while the female plants have a size of 0.73 pg/2C, reflecting a huge genomic divergence between the genders. The great variation in genome size is owing to the presence of Y chromosome in the male populations, playing a multifaceted role in sexual divergence in C. grandis.


Coccinia grandis 45S rDNA FISH CMA Flow cytometry Genome size 



BKB is thankful to Department of Science and Technology, Govt. of India, for the award of INSPIRE Fellowship. We are grateful to Drs. T. Yamamoto and S. Terakami of the National Institute of Fruit Tree Science, Japan for providing rDNA fragment for FISH. We thank Prof. Jaroslav Doležel, Institute of Experimental Botany, Olomouc, Czech Republic for the provision of seeds for reference standard. BKB expresses sincere gratitude to Prof. Timir Baran Jha for his help and guidance in fluorescence banding technique. We also thank CU- BD CoE for Nanobiotechnology, CRNN, University of Calcutta for instrument facilities. Financial assistance from Department of Biotechnology (GOI, Sanction No BT/ PR3919/PBD/16/959/2011) is gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

709_2015_797_Fig3_ESM.gif (125 kb)
Fig. S1

Propidium iodide fluorescence intensity- area (PI- A) histograms of (a) C. grandis male plant of Population I with internal standard Zea mays CE-777 (b) C. grandis female plant of Population I with internal standard Zea mays CE-777 (c) C. grandis male plant of Population II with internal standard Zea mays CE-777 (d) C. grandis female plant of Population II with internal standard Zea mays CE-777 (e) C. grandis male plant of Population III with internal standard Zea mays CE-777 (f) C. grandis female plant of Population III with internal standard Zea mays CE-777 (g) C. grandis male plant of Population IV with internal standard Zea mays CE-777 and (h) C. grandis female plant of Population IV with internal standard Zea mays CE-777. Abbreviation: Mean FL- Mean fluorescence intensity (GIF 125 kb)

709_2015_797_MOESM1_ESM.tif (453 kb)
High resolution image (TIFF 452 kb)


  1. Barker RF, Harberd NP, Jarvis MG, Flavell RB (1988) Structure and evolution of the intergenic region in a ribosomal DNA repeat unit of wheat. J Mol Biol 201:1–17PubMedCrossRefGoogle Scholar
  2. Bergero R, Forrest A, Charlesworth D (2008) Active miniature transposons from a plant genome and its nonrecombining Y chromosome. Genetics 178:1085–1092PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bhaduri PN, Bose PC (1947) Cytogenetical investigations in some common cucurbits, with special reference to fragmentation of chromosomes as a physical basis of speciation. J Genet 48:237–256PubMedCrossRefGoogle Scholar
  4. Bhowmick BK, Jha TB, Jha S (2012) Chromosome analysis in the dioecious cucurbit Coccinia grandis (L.) Voigt. Chromosom Sci 15:9–15Google Scholar
  5. Bhowmick BK, Nanda S, Nayak S, Jha S, Joshi RK (2014) An APETALA3 MADS-box linked SCAR marker associated with male specific sex expression in Coccinia grandis (L). Voigt. Sci Hortic 176:85–90CrossRefGoogle Scholar
  6. Bi K, Bogart JP, Fu J (2009) A populational survey of 45S rDNA polymorphism in the Jefferson salamander Ambystoma jeffersonianum revealed by fluorescence in situ hybridization (FISH). Curr Zool 55(2):145–149Google Scholar
  7. Błocka-Wandas M, Sliwinska E, Grabowska-Joachimiak A, Musial K, Joachimiak AJ (2007) Male gametophyte development and two different DNA classes of pollen grains in Rumex acetosa L., a plant with an XX/XY1Y2 sex chromosome system and a female-biased sex ratio. Sex Plant Reprod 20:171–180CrossRefGoogle Scholar
  8. Caperta AD, Neves N, Morais-Cecilio L et al (2002) Genome restructuring in rye affects the expression, organization and disposition of homologous rDNA loci. J Cell Sci 115:2839–2846PubMedGoogle Scholar
  9. Chakravorti AK (1948) Cytology of Coccinia indica W. & A. with reference to the behaviour of its sex-chromosomes. Proc Plant Sci 27(3):74–86Google Scholar
  10. Chattopadhyay D, Sharma AK (1991) Sex determination in dioecious species of plants. Feddes Repert 102(1–2):29–55Google Scholar
  11. Chen JF, Staub JE, Jiang J (1998) A re-evaluation of karyotype in cucumber (Cucumis sativus L.). Genet Resour Crop Evol 45:301–305CrossRefGoogle Scholar
  12. Cheng BF, Heneen WK (1995) Satellited chromosomes, nucleolus organizer regions and nucleoli of Brassica campestris L., B. nigra (L.) Koch, and Sinapis arvensis L. Hereditas 122:113–118CrossRefGoogle Scholar
  13. D’Cruz R, Vyahalkar GR, Ugale SD (1972) Cytogenetic studies in tetraploid Coccinia indica W. and A. Caryologia 25(4):505–512CrossRefGoogle Scholar
  14. Deng CL, Qin R, Gao J et al (2012) Identification of sex chromosome of spinach by physical mapping of 45S rDNAs by FISH. Caryologia 65(4):322–327CrossRefGoogle Scholar
  15. Doležel J, Bartos J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry A 51A:127–128CrossRefGoogle Scholar
  16. Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244PubMedCrossRefGoogle Scholar
  17. Eriksson S, Kim SK, Kubista M, Nordtn B (1993) Binding of 4′,6-Diamidino-2-phenylindole (DAPI) to AT regions of DNA: evidence for an allosteric conformational change. Biochemistry 32:2987–2998PubMedCrossRefGoogle Scholar
  18. Fukui K (1996) Plant chromosomes at mitosis. In: Fukui K, Nakayama S (eds) Plant chromosomes: laboratory methods. CRC press Inc, Boca Raton, pp 1–17Google Scholar
  19. Gaiero P, Mazzella C, Vaio M et al (2012) An unusually high heterochromatin content and large genome size in the palm tree Trithrinax campestris (Arecaceae). Aust J Bot 60(4):378–382CrossRefGoogle Scholar
  20. Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220(4601):1049–1051PubMedCrossRefGoogle Scholar
  21. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885PubMedPubMedCentralCrossRefGoogle Scholar
  22. Ghadge AG, Karmakar K, Devani RS et al (2014) Flower development, pollen fertility and sex expression analyses of three sexual phenotypes of Coccinia grandis. BMC Plant Biol 14:325PubMedPubMedCentralCrossRefGoogle Scholar
  23. Grabowska-Joachimiak A, Kula A, Książczyk T, Chojnicka J, Sliwinska E, Joachimiak AJ (2014) Chromosome landmarks and autosome-sex chromosome translocations in Rumex hastatulus, a plant with XX/XY1 Y2 sex chromosome system. Chromosom Res. doi: 10.1007/s10577-014-9446-4 Google Scholar
  24. Guerra M, Santos KGB, Barros e Silva AE, Ehrendorfer F (2000) Heterochromatin banding patterns in Rutaceae–Aurantioideae—a case of parallel chromosomal evolution. Am J Bot 87:735–747PubMedCrossRefGoogle Scholar
  25. Guha A, Sinha RK, Sinha S (2004) Average packing ratio as a parameter for analyzing the karyotypes of dioecious cucurbits. Caryologia 57(1):117–120CrossRefGoogle Scholar
  26. Han Y, Zhang Z, Liu JH, Lu JY, Huang SW, Jin WW (2008) Distribution of the tandem repeat sequences and karyotyping in cucumber (Cucumis sativus L.) by fluorescence in situ hybridization. Cytogenet Genome Res 122:80–88PubMedCrossRefGoogle Scholar
  27. Heslop-Harrison JS (P), Schwarzacher T (2011) The plant genome: an evolutionary view on structure and function: organisation of the plant genome in chromosomes. Plant J 66:18–33PubMedCrossRefGoogle Scholar
  28. Holstein N, Renner SS (2011) A dated phylogeny and collection records reveal repeated biome shifts in the African genus Coccinia (Cucurbitaceae). BMC Evol Biol 11:28PubMedPubMedCentralCrossRefGoogle Scholar
  29. Jamilena M, Mariotti B, Manzano S (2008) Plant sex chromosomes: molecular structure and function. Cytogenet Genome Res 120:255–264PubMedCrossRefGoogle Scholar
  30. Jha TB, Yamamoto M (2012) Application of EMA, fluorescence staining and FISH of rDNA in analysis of Aloe vera (L.) Burm. f. chromosomes. Bull Fac Agric Kagoshima Univ 62:83–89Google Scholar
  31. Koo DH, Hur Y, Jin DC, Bang JW (2002) Karyotype analysis of a Korean cucumber cultivar (Cucumis sativus L. cv. Winter Long) using C-banding and bicolor fluorescence in situ hybridization. Mol Cells 13(3):413–418PubMedGoogle Scholar
  32. Kron P, Suda J, Husband BC (2007) Applications of flow cytometry to evolutionary and population biology. Annu Rev Ecol Evol Syst 38:847–876CrossRefGoogle Scholar
  33. Kumar LSS, Viseveshwaraiah S (1952) Sex mechanism in Coccinia indica Wight and Arn. Nature 170:330–331PubMedCrossRefGoogle Scholar
  34. Kumar S, Kumari R, Sharma V (2014) Genetics of dioecy and causal sex chromosomes in plants. J Genet 93:241–277PubMedCrossRefGoogle Scholar
  35. Lan T, Zhang S, Liu B, Li X, Chen R, Song W (2006) Differentiating sex chromosomes of the dioecious Spinacia oleracea L. (spinach) by FISH of 45S rDNA. Cytogenet Genome Res 114(2):175–177PubMedCrossRefGoogle Scholar
  36. Lengerova M, Kejnovsky E, Hobza R, Macas J, Grant SR, Vyskot B (2004) Multicolor FISH mapping of the dioecious model plant, Silene latifolia. Theor Appl Genet 108:1193–1199PubMedCrossRefGoogle Scholar
  37. Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52(2):201–220CrossRefGoogle Scholar
  38. Lohe AR, Roberts PA (1990) An unusual Y chromosome of Drosophila simulans carrying amplified rDNA spacer without rRNA genes. Genetics 125:399–406PubMedPubMedCentralGoogle Scholar
  39. Manzini G, Xodo L, Barcellona ML, Quadrifoglio F (1985) Interaction of 4′-6-diamidino-2-phenylindole 2HCl with synthetic and natural deoxy- and ribonucleic acids. Proc Int Symp Biomol Struct Interact Suppl J Biosci 8(3 & 4):699–711Google Scholar
  40. Mariotti B, Manzano S, Kejnovský E, Vyskot B, Jamilena M (2009) Accumulation of Y-specific satellite DNAs during the evolution of Rumex acetosa sex chromosomes. Mol Genet Genomics 281:249–259PubMedCrossRefGoogle Scholar
  41. Ming R, Bendahmane A, Renner SS (2011) Sex chromosomes in land plants. Annu Rev Plant Biol 62:485–514PubMedCrossRefGoogle Scholar
  42. Moscone EA, Lambrou M, Ehrendorfer F (1996) Fluorescent chromosome banding in the cultivated species of Capsicum (Solanaceae). Plant Syst Evol 202:37–63CrossRefGoogle Scholar
  43. Nakayama S, Fujishita M, Sone T, Ohyama K (2001) Additional locus of rDNA sequence specific to the X chromosome of the liverwort. Marchantia polymorpha. Chromosom Res 9(6):469–473CrossRefGoogle Scholar
  44. Nath S, Jha TB, Mallick SK, Jha S (2014) Karyological relationships in Indian species of Drimia based on fluorescent chromosome banding and nuclear DNA amount. Protoplasma. doi: 10.1007/s00709-014-0679-z PubMedGoogle Scholar
  45. Novotná J, Havelka J, Starý P, Koutecký P, Vītková M (2011) Karyotype analysis of the Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae) reveals a large X chromosome with rRNA and histone gene families. Genetica 139(3):281–289PubMedCrossRefGoogle Scholar
  46. Ohmido N, Fukui K (1996) A new manual for fluorescence in situ hybridization (FISH) in plant chromosomes. Rice Genet Newsl 13:89–93Google Scholar
  47. Paszko B (2006) A critical review and a new proposal of karyotype asymmetry indices. Plant Syst Evol 258:39–48CrossRefGoogle Scholar
  48. Pizzaia D, Oliveira VM, Martins AR, Appezzato-da-Glória B, Forni-Martins E, Aguiar-Perecin MLR (2013) Karyotype characterization reveals active 45S rDNA sites located on chromosome termini in Smilax rufescens (Smilacaceae). Genet Mol Res 12(2):1303–1310PubMedCrossRefGoogle Scholar
  49. Ren Y, Zhang Z, Liu J et al (2009) An integrated genetic and cytogenetic map of the cucumber genome. Plos One 4(6):1–8CrossRefGoogle Scholar
  50. Renner SS, Pandey AK (2013) The Cucurbitaceae of India: accepted names, synonyms, geographic distribution and information on images and DNA sequences. PhytoKeys 20:53–118PubMedCrossRefGoogle Scholar
  51. Schweizer D (1976) Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58(4):307–324PubMedCrossRefGoogle Scholar
  52. Siroky J, Lysak MA, Doležel J, Kejnovsky E, Vyskot B (2001) Heterogeneity of rDNA distribution and genome size in Silene spp. Chromosom Res 9:387–393CrossRefGoogle Scholar
  53. Sivaraj A, Preethi Jenifa B, Kavitha M, Inbasekar P, Senthilkumar B, Panneerselvam A (2011) Antibacterial activity of Coccinia grandis leaf extract on selective bacterial strains. J Appl Pharm Sci 1(7):120–123Google Scholar
  54. Sousa A, Fuchs J, Renner SS (2013) Molecular cytogenetics (FISH, GISH) of Coccinia grandis: a ca. 3 myr-old species of cucurbitaceae with the largest Y/autosome divergence in flowering plants. Cytogenet Genome Res 139(2):107–118PubMedCrossRefGoogle Scholar
  55. Stack S, Herickhoff L, Sherman J, Anderson L (1991) Staining plant cells with silver. I. The salt-nylon technique. Biotech Histochem 1:69–78PubMedCrossRefGoogle Scholar
  56. Stebbins GL (1971) Chromosomal changes, genetic recombination and speciation. In: Barrington EJW, Willis AJ (eds) Chromosomal evolution in higher plants. Edward Arnold Publishers Pvt. Ltd., London, pp 72–123Google Scholar
  57. Sutradhar BK, Islam MJ, Shoyeb MA et al (2011) An evaluation of antihyperglycemic and antinociceptive effects of crude methanol extract of Coccinia grandis (L.) J. Voigt. (Cucurbitaceae) leaves in swiss albino mice. Adv Nat Appl Sci 5(1):1–5Google Scholar
  58. Takehana Y, Naruse K, Asada Y et al (2012) Molecular cloning and characterization of the repetitive DNA sequences that comprise the constitutive heterochromatin of the W chromosomes of medaka fishes. Chromosom Res 20(1):71–81CrossRefGoogle Scholar
  59. Vasconcelos S, Souza AA, Gusmão CL, Milani M, Benko-Iseppon AM, Brasileiro-Vidal AC (2010) Heterochromatin and rDNA 5S and 45S sites as reliable cytogenetic markers for castor bean (Ricinus communis, Euphorbiaceae). Micron 41:746–753PubMedCrossRefGoogle Scholar
  60. Waminal NE, Kim HH (2012) Dual-color FISH Karyotype and rDNA distribution analyses on four Cucurbitaceae species. Hortic Environ Biotechnol 53(1):49–56CrossRefGoogle Scholar
  61. Whitaker TW (1933) Cytological and phylogenetic studies in the Cucurbitaceae. Bot Gaz 94:780–790CrossRefGoogle Scholar
  62. Xiang-Hui J (2011) Karyotype analysis of three Solanum plants using combined PI-DAPI staining and double fluorescence in situ hybridization with 45S and 5S rDNA probes. Afr J Biotechnol 10(82):18948–18957Google Scholar
  63. Xu YH, Yang F, Cheng YL, Ma L, Wang JB, Li LJ (2007) Comparative analysis of rDNA distribution in metaphase chromosomes of Cucurbitaceae species. Hereditas (Beijing) 29:614–620CrossRefGoogle Scholar
  64. Yamamoto M, Terakami S, Yamamoto T, Takada N, Kubo T, Tominaga S (2010) Detection of the ribosomal RNA gene in pear (Pyrus spp.) using fluorescence in situ hybridization. Jpn Soc Hortic Sci 79:335–339CrossRefGoogle Scholar
  65. Zarco CR (1986) A new method for estimating karyotype asymmetry. Taxon 35(3):526–530CrossRefGoogle Scholar
  66. Zhao X, Lu J, Zhang Z, Hu J, Huang S, Jin WW (2011) Comparison of the distribution of the repetitive DNA sequences in three variants of Cucumis sativus reveals their phylogenetic relationships. J Genet Genom 38:39–45CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Biplab Kumar Bhowmick
    • 1
  • Masashi Yamamoto
    • 2
  • Sumita Jha
    • 1
  1. 1.Center of Advanced Study, Department of BotanyUniversity of Calcutta 35KolkataIndia
  2. 2.Faculty of AgricultureKagoshima UniversityKagoshimaJapan

Personalised recommendations