Advertisement

Protoplasma

, Volume 253, Issue 1, pp 111–125 | Cite as

Effects of copper and lead exposure on the ecophysiology of the brown seaweed Sargassum cymosum

  • Giulia Burle Costa
  • Marthiellen R. L. de Felix
  • Carmen Simioni
  • Fernanda Ramlov
  • Eva Regina Oliveira
  • Débora T. Pereira
  • Marcelo Maraschin
  • Fungyi Chow
  • Paulo Antunes Horta
  • Cristina Moreira Lalau
  • Cristina H. da Costa
  • William Gerson Matias
  • Zenilda L. Bouzon
  • Éder C. Schmidt
Original Article

Abstract

The effects of the heavy metals copper (Cu) and lead (Pb) on Sargassum cymosum were evaluated by determining uptake capacity, growth rates, photosynthetic efficiency, contents of photosynthetic pigments and phenolic compounds, 2,2-diphenyl-1-picrylhydrazyl radical-scavenging capacity, and morphological and cellular changes. S. cymosum was cultivated with Cu and Pb separately and combined at concentrations of 10, 25, and 50 μM for 7 days in laboratory-controlled conditions. Seaweeds under Cu treatment showed the highest biosorption capacity, and growth rates were significantly reduced compared to the control. The photosynthesis/irradiance curves showed alterations in kinetic patterns in the metal-treated samples. Specifically, Cu treatment alone inhibited electron transport rate (ETR) response, while Pb alone induced it. However, samples treated with both Cu and Pb (Cu + Pb) showed inhibition in ETR. The total amount of pigments increased relative to control. Light microscopy showed an increase in phenolic compounds, with physodes migrating towards cortical cells. Scanning electronic microscopy revealed alterations in the typical rough surface of thallus, when compared with control, especially for Pb treatments. Based on these results, it could be concluded that Cu and Pb are stress factors for S. cymosum, promoting alterations in seaweed metabolism and stimulating protective mechanisms against oxidative stress. However, the high bioaccumulation capacity of both heavy metals indicates a possible application for S. cymosum as a biosorbent agent for contaminated wastewater when metals are in low concentrations.

Keywords

Sargassum cymosum Ecophysiology Biosorption Metal uptake Photosynthetic efficiency Cellular structure 

Notes

Acknowledgments

The authors would like to acknowledge the staff of the Central Laboratory of Electron Microscopy (LCME), Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil, for the use of their scanning electron microscopy. Éder C. Schmidt holds a postdoctoral fellowship from CAPES. Giulia B. Costa holds a Master’s degree fellowship from CAPES. Zenilda L. Bouzon is a CNPq fellow. Fungyi Chow is a FAPESP fellow. This study is part of the MSc dissertation of the first author.

Supplementary material

709_2015_795_MOESM1_ESM.rtf (39 kb)
ESM 1 (RTF 39 kb)
709_2015_795_Fig8_ESM.gif (173 kb)
ESM 2

(GIF 173 kb)

709_2015_795_MOESM2_ESM.tif (40.9 mb)
High resolution image (TIFF 41893 kb)
709_2015_795_MOESM3_ESM.docx (21 kb)
ESM 3 (DOCX 20 kb)

References

  1. Alahverdi M, Savabieasfahani M (2012) Metal pollution in seaweed and related sediment of the Persian Gulf, Iran. Environ Contam Toxicol 88(6):939–945CrossRefGoogle Scholar
  2. Aman R, Carle R, Conrad J, Beifuss U, Schieber A (2005) Isolation of carotenoids from plant materials and dietary supplements by high-speed counter-current chromatography. J Chromatogr A 1074:99–105PubMedCrossRefGoogle Scholar
  3. Balboa EM, Conde E, Moure A, Falqué E, Domínguez H (2013) In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chem 138:1764–1785PubMedCrossRefGoogle Scholar
  4. Betancor S, Tuya F, Gil-Díaz T, Figueroa FL, Haroun R (2014) Effects of a submarine eruption on the performance of two brown seaweeds. Mar Environ Res 79:37–47Google Scholar
  5. Brinza L, Nygård CA, Dring MJ, Gavrilescu M, Benning LG (2009) Cadmium tolerance and adsorption by the marine brown alga Fucus vesiculosus from the Irish Sea and the Bothnian Sea. Bioresource Technol 100:1727–1733CrossRefGoogle Scholar
  6. Collén J, Pinto E, Pedersén M, Colepicolo P (2003) Induction of oxidative stress in the red macroalga Gracilaria tenuistipitata by pollutant metals. Arch Environ Con Tox 45:337–342CrossRefGoogle Scholar
  7. Connan S, Stengel DB (2011) Impacts of ambient salinity and copper on brown algae: 1. Interactive effects on photosynthesis, growth, and copper accumulation. Aquat Toxicol 104:94–107PubMedCrossRefGoogle Scholar
  8. Davis TA, Volesky B, Vieira RHSF (2000) Sargassum seaweed as biosorbent for heavy metals. Water Res 34(17):4270–4278CrossRefGoogle Scholar
  9. Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330PubMedCrossRefGoogle Scholar
  10. de Felix MRL, Osorio LKP, Ouriques LC, Farias-Soares FL, Steiner N, Kreusch M, Pereira D, Simioni C, Costa GB, Horta PA, Chow F, Ramlov F, Maraschin M, Bouzon ZL, Schmidt EC (2014) The effect of cadmium under different salinity conditions on the cellular architecture and metabolism in the red alga Pterocladiella capillacea (Rhodophyta, Gelidiales). Microsc Microanal (Print) 20:1411–1424CrossRefGoogle Scholar
  11. Dummermuth AL, Karsten U, Fisch KM, König GM, Wiencke C (2003) Responses of marine macroalgae to hydrogen-peroxide stress. J Exp Mar Biol Ecol 289:103–121CrossRefGoogle Scholar
  12. Edwards P (1972) Cultured red alga to measure pollution. Marine Poll Bull 3(12):184–188CrossRefGoogle Scholar
  13. Fichet D, Radenac G, Miramand P (1998) Experimental studies of impacts of harbour sediments resuspension to marine invertebrates larvae: bioavailability of Cd, Cu, Pb and Zn and toxicity. Marine Poll Bull 7–12(36):509–518CrossRefGoogle Scholar
  14. Figueroa F, Nygard C, Ekelund N, Gómez I (2003) Photobiological characteristics and photosynthetic UV responses in two Ulva species (Chlorophyta) from southern Spain. J Photoch Photobio 72(3):5–44Google Scholar
  15. Fourestand E, Volesky B (1996) Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans. Environ Sci Technol 30:277–282CrossRefGoogle Scholar
  16. Freitas OMM, Martins RJE, Delerue-Matos CM, Boaventura RAR (2008) Removal of Cd(II), Zn(II) and Pb(II) from aqueous solutions by brown marine macro algae: kinetic modeling. J Hazard Mater 153:493–501PubMedCrossRefGoogle Scholar
  17. Fujii MT, Pupo D, Ouriques LC, Guimaraes SMPB, Yokoya NS (2011) Marine benthic algae from Santa Catarina state, Southern Brazil. Boletim do Instituto de Botânica 20, BrazilGoogle Scholar
  18. Gledhill M, Nimmo M, Hill SJ, Brown MT (1999) The release of copper-complexing ligands by the brown alga Fucus vesiculosus (Phaeophyceae) in response to increasing total copper levels. J Phycol 35:501–509CrossRefGoogle Scholar
  19. Gouveia C, Kreusch M, Schmidt EC, Felix MR De L, Osorio LKP, Pereira DT, Santos R, Ouriques LC, Martins RP, Latini A, Ramlov F, Carvalho TJG, Chow F, Maraschin M, Bouzon ZL (2013) The effects of lead and copper on the cellular architecture and metabolism of the red alga Gracilaria domingensis. Microsc Microanal 19(3):513–524PubMedCrossRefGoogle Scholar
  20. Han T, Kang SH, Park JS, Lee HK, Brown MT (2008) Physiological responses of Ulva pertusa and U. armoricana to copper exposure. Aquat Toxicol 86:176–184PubMedCrossRefGoogle Scholar
  21. Hu JZ, Zheng AZ, Pei DL, Shi GX (2010) Bioaccumulation and chemical forms of cadmium, copper and lead in aquatic plants. Braz Arch Biol Technol 53(1):235–240CrossRefGoogle Scholar
  22. Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agr Food Chem 53:1841–1856CrossRefGoogle Scholar
  23. Huovinen P, Leal P, Gómez I (2010) Interacting effects of copper, nitrogen and ultraviolet radiation on the physiology of three south Pacific kelps. Mar Freshwater Res 61:330–341CrossRefGoogle Scholar
  24. Jacinto MLJAJ, David CPC, Perez TR, Jesus BR (2009) Comparative efficiency of algal biofilters in the removal of chromium and copper from wastewater. Ecol Eng 35:856–860CrossRefGoogle Scholar
  25. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol 167:191–194Google Scholar
  26. Jothinayagi N, Anbazhagan C (2009) Heavy metal monitoring of Rameswaram Coast by some Sargassum species. American-Eurasian J Agric Environ 4(2):73–80Google Scholar
  27. Karez CS, Magalhaes VF, Pfeiffer WC (1994) Trace metal accumulation by algae in Sepetiba Bay, Brazil. Environ Pollut 83:351–356PubMedCrossRefGoogle Scholar
  28. Kim YK, Guo Q, Packer L (2002) Free radical scavenging activity of red ginseng aqueous extracts. Toxicology 172:149–156PubMedCrossRefGoogle Scholar
  29. Kleinübing SJ, Guibal E, Silva EA, Silva MGC (2012) Copper and nickel competitive biosorption simulation from single and binary systems by Sargassum filipendula. Chem Eng J 184:16–22CrossRefGoogle Scholar
  30. Lignell A, Pedersén M (1989) Ágar composition as a function of morphology and growth rate: studies on some morphological strains of Gracilaria secundata and Gracilaria verrucosa (Rhodophyta). Bot Mar 32:219–227CrossRefGoogle Scholar
  31. Luna AS, Costa ALH, Costa ACA, Henriques CA (2010) Competitive biosorption of cadmium(II) and zinc(II) ions from binary systems by Sargassum filipendula. Bioresource Technol 101:5104–5111CrossRefGoogle Scholar
  32. Mamboya FA, Pratap HB, Mtolera M, Björk M (1999) The effect of copper on the daily growth rate and photosynthetic efficiency of the brown macroalga Padina boergesenii. http://www.oceandocs.org/handle/1834/787. Accessed 17 April 2014
  33. Martins CDL, Arantes N, Faveri C, Batista MB, Oliveira EC, Pagliosa PR, Fonseca AL, Nunes JMC, Chow F, Pereira SB, Horta PA (2012) The impact of coastal urbanization on the structure of phytobenthic communities in southern Brazil. Mar Pollut Bull 64:772–778PubMedCrossRefGoogle Scholar
  34. Melville F, Pulkownik A (2007) Investigation of mangrove macroalgae as biomonitors of estuarine metal contamination. Sci Total Environ 387:301–309PubMedCrossRefGoogle Scholar
  35. Nielsen HD, Nielsen SL (2005) Photosynthetic responses to Cu2+ exposure are independent of light acclimation and uncoupled from growth inhibition in Fucus serratus (Phaeophyceae). Mar Pollut Bull 51:715–721PubMedCrossRefGoogle Scholar
  36. Nielsen HD, Nielsenb SL (2010) Adaptation to high light irradiances enhances the photosynthetic Cu2+ resistance in Cu2+ tolerant and non-tolerant populations of the brown macroalgae Fucus serratus. Mar Pollut Bull 60:710–717PubMedCrossRefGoogle Scholar
  37. Pagliosa PR, Fonseca A, Barbosa FA (2006) Evidence of systemic changes in trace metal concentrations in subtropical estuarine sediments as a result of urbanization. J Coastal Res 39:1078–1083Google Scholar
  38. Pinto E, Sigaud-Kutner TCS, Leitão MAS, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39:1008–1018CrossRefGoogle Scholar
  39. Platt T, Gallegos C, Harrison W (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38(68):7–701Google Scholar
  40. Polo LK, Felix MRL, Kreusch M, Pereira DT, Costa GB, Simioni C, Ouriques LC, Chow F, Ramlov F, Maraschin M, Bouzon ZL, Schmidt EC (2014) Photoacclimation responses of the brown macroalga Sargassum cymosum to the combined influence of UV radiation and salinity: cytochemical and ultrastructural organization and photosynthetic performance. J Photoch PhotobiolGoogle Scholar
  41. Ragan MA, Glombitza KW (1986) Phlorotannins, brown algal polyphenols. Progr Phycologic Research 4:129–241Google Scholar
  42. Ramus J, Rosenberg G (1980) Diurnal photosynthetic performance of seaweeds measured under natural conditions. Mar Biol 56:21–28CrossRefGoogle Scholar
  43. Randhir R, Shetty P, Shetty K (2002) L-DOPA and total phenolic stimulation in dark germinated fava bean in response to peptide and phytochemical elicitors. Process Biochem 37:1247–1256CrossRefGoogle Scholar
  44. Romera E, González F, Ballester A, Blázquez ML, Muñoz JA (2007) Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol 98(17):3344–3353PubMedCrossRefGoogle Scholar
  45. Rovai AS, Barufi JB, Pagliosa PR, Scherner F, Torres MA, Horta PA, Simonassi JC, Quadros DPC, Borges DLG, Soriano-Sierra EJ (2013) Photosynthetic performance of restored and natural mangroves under different environmental constraints. Environ Pollut 181:233–241PubMedCrossRefGoogle Scholar
  46. Santos RW, Schmidt EC, Martins RP, Latini A, Maraschin M, Horta PA, Bouzon ZL (2012) Effects of cadmium on growth, photosynthetic pigments, photosynthetic performance, biochemical parameters and structure of chloroplasts in the agarophyte Gracilaria domingensis (Rhodophyta, Gracilariales). Am J Plant Sci 3:1077–1084CrossRefGoogle Scholar
  47. Santos RW, Schmidt EC, Felix MRL, Polo LK, Kreusch M, Pereira DT, Costa GB, Simioni C, Chow F, Ramlov F, Maraschin M, Bouzon ZL (2014) Bioabsorption of cadmium, copper and lead by the red macroalga Gelidium floridanum: physiological responses and ultrastructure features. Ecotox Environ Safe 105:80–89CrossRefGoogle Scholar
  48. Scherner F, Ventura R, Barufi JB, Horta PA (2012a) Salinity critical threshold values for photosynthesis of two cosmopolitan seaweed species: providing baselines for potential shifts on seaweed assemblages. Mar Environ Res 79:1–12CrossRefGoogle Scholar
  49. Scherner F, Barufi JB, Horta PA (2012b) Photosynthetic response of two seaweed species along an urban pollution gradient: evidence of selection of pollution-tolerant species. Mar Pollut Bull 64:2380–2390PubMedCrossRefGoogle Scholar
  50. Scherner F, Horta PA, Oliveira EC, Simonassi JC, Hall-Spencer JM, Chow F, Nunes JMC, Pereira SMB (2013) Coastal urbanization leads to remarkable seaweed species loss and community shifts along the SW Atlantic. Mar Pollut Bull 76:106–115PubMedCrossRefGoogle Scholar
  51. Schmidt EC, Scariot LA, Rover T, Bouzon ZL (2009) Changes in ultrastructure and histochemistry of two red macroalgae strains of Kappaphycus alvarezii (Rhodophyta, Gigartinales), as a consequence of ultraviolet B radiation exposure. Micron 40:860–869PubMedCrossRefGoogle Scholar
  52. Schmidt EC, Pereira B, Pontes CLM, Santos R, Scherner F, Horta PA, Martins RP, Latini A, Maraschin M, Bouzon ZL (2012) Alterations in architecture and metabolism induced by ultraviolet radiation-B in the carragenophyte Chondracanthus teedei (Rhodophyta, Gigartinales). Protoplasma 249:353–367PubMedCrossRefGoogle Scholar
  53. Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62PubMedCrossRefGoogle Scholar
  54. Sheng PX, Ting YP, Chen JP, Hong L (2004) Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J Colloid Interface Sci 275:131–141PubMedCrossRefGoogle Scholar
  55. Shoenwaelder M (2002) The occurrence and cellular significance of physodes in the brown algae. Phycologia 41(2):125–139CrossRefGoogle Scholar
  56. Shoenwaelder M (2008) The biology of phenolic containing vesicles. Algae 23:163–75CrossRefGoogle Scholar
  57. Széchy MTM, Paula EJ (2000) Padrões estruturais quantitativos de bancos de Sargassum (Phaeophyta, Fucales) do litoral dos estados do Rio de Janeiro e São Paulo, Brasil. Rev Bras Bot 23(2):121–132CrossRefGoogle Scholar
  58. Thibaut T, Pinedo S, Torras X, Ballesteros E (2005) Long-term decline of the populations of Fucales (Cystoseira spp. and Sargassum spp.) in the Albères coast (France, North-western Mediterranean). Mar Pollut Bull 50:1472–1489PubMedCrossRefGoogle Scholar
  59. Toth G, Pavia H (2000) Lack of phlorotannin induction in the brown seaweed Ascophyllum nodosum in response to increased copper concentrations. Mar Ecol-Prog Ser 192:119–126CrossRefGoogle Scholar
  60. Vieira RHSF, Volesky B (2000) Biosorption: a solution to pollution? Int Microbiol 3:17–24PubMedGoogle Scholar
  61. Vijayaraghavan K, Teo TT, Balasubramanian R, Joshi UM (2009) Application of Sargassum biomass to remove heavy metal ions from synthetic multi-metal solutions and urban storm water runoff. J Hazard Mater 164:1019–1023PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Giulia Burle Costa
    • 1
  • Marthiellen R. L. de Felix
    • 1
  • Carmen Simioni
    • 1
  • Fernanda Ramlov
    • 3
  • Eva Regina Oliveira
    • 3
  • Débora T. Pereira
    • 2
  • Marcelo Maraschin
    • 3
  • Fungyi Chow
    • 4
  • Paulo Antunes Horta
    • 5
  • Cristina Moreira Lalau
    • 6
  • Cristina H. da Costa
    • 6
  • William Gerson Matias
    • 6
  • Zenilda L. Bouzon
    • 1
  • Éder C. Schmidt
    • 7
  1. 1.Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and GeneticsFederal University of Santa CatarinaFlorianópolisBrazil
  2. 2.Scientific Initiation-PIBIC-CNPq, Department of Cell Biology, Embryology and GeneticsFederal University of Santa CatarinaFlorianópolisBrazil
  3. 3.Plant Morphogenesis and Biochemistry LaboratoryFederal University of Santa CatarinaFlorianópolisBrazil
  4. 4.Institute of BioscienceUniversity of São PauloSão PauloBrazil
  5. 5.Phycology Laboratory, Department of BotanyFederal University of Santa CatarinaFlorianópolisBrazil
  6. 6.Postgraduate Program in Environmental Engineering, Department of Environmental and Sanitary EngineeringFederal University of Santa CatarinaFlorianópolisBrazil
  7. 7.Postgraduate Program in Cell Biology and Development, Department of Cell Biology, Embryology and GeneticsFederal University of Santa CatarinaFlorianopolisBrazil

Personalised recommendations