Protoplasma

, Volume 251, Issue 6, pp 1427–1439 | Cite as

Expression response of duplicated metallothionein 3 gene to copper stress in Silene vulgaris ecotypes

  • Eva Nevrtalova
  • Jiri Baloun
  • Vojtech Hudzieczek
  • Radim Cegan
  • Boris Vyskot
  • Jaroslav Dolezel
  • Jan Safar
  • David Milde
  • Roman Hobza
Original Article

Abstract

Metallothioneins (MTs) were identified as important players in metal metabolism. MT3 gene presents a key metallothionein controlling copper homeostasis in plants. We have selected one cupricolous and one non-cupricolous ecotype to isolate and analyse the MT3 gene in Silene vulgaris. For expression data comparison, we have also included other metal-tolerant ecotypes. Based on a S. vulgaris BAC library screening, we have identified and sequenced a genomic clone containing MT3 gene (SvMT3). We found that SvMT3 gene has been locally duplicated in a tandem arrangement. Expression analysis and complementation studies using yeast mutants showed that both copies of the SvMT3 gene were functional. Moreover, we examined the expression of MT3 gene(s) in selected ecotypes under different copper treatments to show the tissue-specific expression response to copper stress. We demonstrated that higher copper concentrations specifically affected MT3 expression among ecotypes. Our analysis shows that MT3a has similar expression pattern in cupricolous ecotypes while MT3b has common expression features shared by all metallophyte S. vulgaris ecotypes. Our data indicate that down-regulation of MT3b root expression in higher copper concentrations is associated with copper stress. We propose that there might be a specific regulation of SvMT3s transcription depending on the type of heavy metal tolerance.

Keywords

Copper Gene duplication Metallothionein Heavy metal tolerance Silene vulgaris 

Abbreviations

MTs

Metallothioneins

MT3

Metallothionein 3

SvMT3

Metallothionein 3 of S. vulgaris

qRT-PCR

Quantitative real-time PCR

ROS

Reactive oxygen species

AAS

Atomic absorption spectroscopy

Supplementary material

709_2014_644_MOESM5_ESM.docx (13 kb)
Supplemental Table 1 (DOCX 13 kb)
709_2014_644_MOESM6_ESM.docx (153 kb)
Supplemental Table 2 (DOCX 152 kb)
709_2014_644_MOESM7_ESM.docx (13 kb)
Supplemental Table 3 (DOCX 13 kb)
709_2014_644_MOESM1_ESM.docx (87 kb)
Supplemental Fig. 1 (DOCX 86 kb)
709_2014_644_MOESM2_ESM.docx (102 kb)
Supplemental Fig. 2 (DOCX 101 kb)
709_2014_644_MOESM3_ESM.docx (396 kb)
Supplemental Fig. 3 (DOCX 395 kb)
709_2014_644_MOESM4_ESM.docx (119 kb)
Supplemental Fig. 4 (DOCX 119 kb)

References

  1. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2 PubMedCrossRefGoogle Scholar
  2. Andráš P, Lichý A, Rusková J, Matúšková L (2008) Heavy metal contamination of the landscape at the Ľ ubietová deposit (Slovakia ). WASET 2:77–80Google Scholar
  3. Andráš P, Nagyová I, Samešová D, Melichová Z (2012) Study of environmental risks at an old spoil dump field. Pol J Environ Stud 21:1529–1538Google Scholar
  4. Berta M, Giovannelli A, Potenza E et al (2009) Type 3 metallothioneins respond to water deficit in leaf and in the cambial zone of white poplar (Populus alba). J Plant Physiol 166:521–530. doi:10.1016/j.jplph.2008.08.005 PubMedCrossRefGoogle Scholar
  5. Blavet N, Charif D, Oger-Desfeux C et al (2011) Comparative high-throughput transcriptome sequencing and development of SiESTa, the Silene EST annotation database. BMC Genomics. doi:10.1186/1471-2164-12-376 PubMedPubMedCentralGoogle Scholar
  6. Cegan R, Vyskot B, Kejnovsky E et al (2012) Genomic diversity in two related plant species with and without sex chromosomes—Silene latifolia and S. vulgaris. PLos ONE. doi:10.1371/journal.pone.0031898 PubMedPubMedCentralGoogle Scholar
  7. Chevreux B, Pfisterer T, Drescher B et al (2004) Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res 14:1147–1159. doi:10.1101/gr.1917404 PubMedCrossRefPubMedCentralGoogle Scholar
  8. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182. doi:10.1146/annurev.arplant.53.100301.135154 PubMedCrossRefGoogle Scholar
  9. Drummond A, Ashton B, Buxton S, et al. Geneious v5.4. http://www.geneious.com/web/geneious/citations. Accessed 26 Sep 2012
  10. Ernst WHO, Schat H, Verkleij J (1990) Evolutionary biology of metal resistnance in Silene vulgaris. Evol Trends Plants 4:45–51Google Scholar
  11. Freisinger E (2011) Structural features specific to plant metallothioneins. J Biol Inorg Chem 16:1035–1045. doi:10.1007/s00775-011-0801-z PubMedCrossRefGoogle Scholar
  12. Guo WJ, Bundithya W, Goldsbrough PB (2003) Characterization of the Arabidopsis metallothionein gene family: tissue-specific expression and induction during senescence and in response to copper. New Phytol 159:369–381. doi:10.1046/j.1469-8137.2003.00813.x CrossRefGoogle Scholar
  13. Guo W-J, Meetam M, Goldsbrough PB (2008) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol 146:1697–1706. doi:10.1104/pp.108.115782 PubMedCrossRefPubMedCentralGoogle Scholar
  14. Hamer D, Thiele D, Lemontt J (1985) Function and autoregulation of yeast copperthionein. Science 228:685–690PubMedCrossRefGoogle Scholar
  15. Hanikenne M, Nouet C (2011) Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics. Curr Opin Plant Biol 14:252–259. doi:10.1016/j.pbi.2011.04.003 PubMedCrossRefGoogle Scholar
  16. Hassinen VH, Tervahauta AI, Schat H, Karenlampi SO (2011) Plant metallothioneins—metal chelators with ROS scavenging activity? Plant Biol 13:225–232. doi:10.1111/j.1438-8677.2010.00398.x PubMedCrossRefGoogle Scholar
  17. Hassinen VH, Tuomainen M, Peraniemi S et al (2009) Metallothioneins 2 and 3 contribute to the metal-adapted phenotype but are not directly linked to Zn accumulation in the metal hyperaccumulator, Thlaspi caerulescens. J Exp Bot 60:187–196. doi:10.1093/jxb/ern287 PubMedCrossRefPubMedCentralGoogle Scholar
  18. Jack E, Hakvoort HWJ, Reumer A et al (2007) Real-time PCR analysis of metallothionein-2b expression in metallicolous and non-metallicolous populations of Silene vulgaris (Moench) Garcke. Environ Exp Bot 59:84–91. doi:10.1016/j.envexpbot.2005.10.005 CrossRefGoogle Scholar
  19. Kojima Y, Binz P, Kӓgi J (1999) Nomenclature of metallothionein: proposal for a revision. Metallothionein IV. doi:10.1007/978-3-0348-8847-9_1 Google Scholar
  20. Kovacik J, Klejdus B, Hedbavny J, Backor M (2010) Tolerance of Silene vulgaris to copper: population-related comparison of selected physiological parameters. Environ Toxicol 25:581–592. doi:10.1002/tox.20519 PubMedCrossRefGoogle Scholar
  21. Krӓmer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16:133–141. doi:10.1016/j.copbio.2005.02.006 CrossRefGoogle Scholar
  22. Lee J, Shim D, Song WY et al (2004) Arabidopsis metallothioneins 2a and 3 enhance resistance to cadmium when expressed in Vicia faba guard cells. Plant Mol Biol 54:805–815. doi:10.1007/s11103-004-0190-6 PubMedCrossRefGoogle Scholar
  23. Liu N, Lin Z, Mo H (2012) Metal (Pb, Cd, and Cu)-induced reactive oxygen species accumulations in aerial root cells of the Chinese banyan (Ficus microcarpa). Ecotoxicology 21:2004–2011. doi:10.1007/s10646-012-0935-y PubMedCrossRefGoogle Scholar
  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. doi:10.1006/meth.2001.1262 PubMedCrossRefGoogle Scholar
  25. Lolkema P, Donker M, Schouten A, Ernst W (1984) The possible role of metallothioneins in copper tolerance of Silene cucubalus. Planta 162:174–179. doi:10.1007/BF00410215 PubMedCrossRefGoogle Scholar
  26. Mengoni A, Gonnelli C, Hakvoort HWJ et al (2003) Evolution of copper-tolerance and increased expression of a 2b-type metallothionein gene in Silene paradoxa L. populations. Plant Soil 257:451–457. doi:10.1023/A:1027325907996 CrossRefGoogle Scholar
  27. Mir G, Domenech J, Huguet G et al (2004) A plant type 2 metallothionein (MT) from cork tissue responds to oxidative stress. J Exp Bot 55:2483–2493. doi:10.1093/jxb/erh254 PubMedCrossRefGoogle Scholar
  28. Mleczek M, Gąsecka M, Drzewiecka K et al (2013) Copper phytoextraction with willow (Salix viminalis L.) under various Ca/Mg ratios. Part 1. Copper accumulation and plant morphology changes. Acta Physiol Plant 35:3251–3259. doi:10.1007/s11738-013-1360- CrossRefGoogle Scholar
  29. Norén H, Svensson P, Andersson B (2004) A convenient and versatile hydroponic cultivation system for Arabidopsis thaliana. Physiol Plant 121:343–348. doi:10.1111/j.0031-9317.2004.00350.x CrossRefGoogle Scholar
  30. Ramli Z, Abdullah SNA (2010) Functional characterisation of the oil palm type 3 Metallothionein-like Gene (MT3-B) promoter. Plant Mol Biol Report 28:531–541. doi:10.1007/s11105-009-0177-1 CrossRefGoogle Scholar
  31. Rauser WE (1999) Structure and function of metal chelators produced by plants—the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem Biophys 31:19–48. doi:10.1007/BF02738153 PubMedCrossRefGoogle Scholar
  32. Roosens NH, Bernard C, Leplae R, Verbruggen N (2004) Evidence for copper homeostasis function metallothionein of metallothionein (MT3) in the hyperaccumulator Thlaspi caerulescens. FEBS Lett 577:9–16. doi:10.1016/j.febslet.2004.08.084 PubMedCrossRefGoogle Scholar
  33. Roosens NH, Leplae R, Bernard C, Verbruggen N (2005) Variations in plant metallothioneins: the heavy metal hyperaccumulator Thlaspi caerulescens as a study case. Planta 222:716–729. doi:10.1007/s00425-005-0006-1 PubMedCrossRefGoogle Scholar
  34. Schat H, Bookum WT (1992) Genetic control of copper tolerance in Silene vulgaris. Heredity 68:219–229CrossRefGoogle Scholar
  35. Schat H, Kuiper E, Bookum WT, Vooijs R (1993) A general model for the genetic control of copper tolerance in Silene vulgaris: evidence from crosses between plants from different tolerant populations. Heredity 70:142–147CrossRefGoogle Scholar
  36. Schat H, Vooijs R (1997) Multiple tolerance and co-tolerance to heavy metals in Silene vulgaris: a co-segregation analysis. New Phytol 136:489–496. doi:10.1046/j.1469-8137.1997.00756.x CrossRefGoogle Scholar
  37. Schat H, Vooijs R, Kuiper E (1996) Identical major gene loci for heavy metal tolerances that have independently evolved in different local populations and subspecies of Silene vulgaris. Evolution 50:1888–1895CrossRefGoogle Scholar
  38. Stothard P (2000) The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28:1102–1102Google Scholar
  39. Van Hoof N, Hassinen VH, Hakvoort HWJ et al (2001) Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene. Plant Physiol 126:1519–1526. doi:10.1104/pp.126.4.1519 PubMedCrossRefPubMedCentralGoogle Scholar
  40. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776. doi:10.1111/j.1469-8137.2008.02748.x PubMedCrossRefGoogle Scholar
  41. Zhigang A, Cuijie L, Yuangang Z et al (2006) Expression of BjMT2, a metallothionein 2 from Brassica juncea, increases copper and cadmium tolerance in Escherichia coli and Arabidopsis thaliana, but inhibits root elongation in Arabidopsis thaliana seedlings. J Exp Bot 57:3575–3582. doi:10.1093/jxb/erl102 PubMedCrossRefGoogle Scholar
  42. Zhou J, Goldsbrough P (1995) Structure, organization and expression of the metallothionein gene family in Arabidopsis. Mol Gen Genet 248:318–328. doi:10.1007/BF02191599 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Eva Nevrtalova
    • 1
    • 2
  • Jiri Baloun
    • 1
  • Vojtech Hudzieczek
    • 1
  • Radim Cegan
    • 1
  • Boris Vyskot
    • 1
  • Jaroslav Dolezel
    • 3
  • Jan Safar
    • 3
  • David Milde
    • 4
  • Roman Hobza
    • 1
    • 3
  1. 1.Department of Plant Developmental Genetics, Institute of BiophysicsAcademy of Sciences of the Czech Republic, v.v.i.BrnoCzech Republic
  2. 2.Department of Plant Biology, Faculty of AgronomyMendel University in BrnoBrnoCzech Republic
  3. 3.Institute of Experimental BotanyCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomouc-HoliceCzech Republic
  4. 4.Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of SciencePalacky UniversityOlomoucCzech Republic

Personalised recommendations