Advertisement

Protoplasma

, Volume 251, Issue 2, pp 363–372 | Cite as

Going "open" with Mesoscopy: a new dimension on multi-view imaging

  • Emilio Gualda
  • Nuno Moreno
  • Pavel Tomancak
  • Gabriel G. Martins
Special Issue: New/Emerging Techniques in Biological Microscopy

Abstract

OpenSPIM and OpenSpinMicroscopy emerged as open access platforms for Light Sheet and Optical Projection Imaging, often called as optical mesoscopy techniques. Both projects can be easily reproduced using comprehensive online instructions that should foster the implementation and further development of optical imaging techniques with sample rotation control. This additional dimension in an open system offers the possibility to make multi-view microscopy easily modified and will complement the emerging commercial solutions. Furthermore, it is deeply based on other open platforms such as MicroManager and Arduino, enabling development of tailored setups for very specific biological questions. In our perspective, the open access principle of OpenSPIM and OpenSpinMicroscopy is a game-changer, helping the concepts of light sheet and optical projection tomography (OPT) to enter the mainstream of biological imaging.

Keywords

Light sheet microscopy Optical projection tomography Fluorescence imaging Microscopy Mesoscopy Open source 

Abbreviations

3D

Three dimensional

4D

Four dimensional

ASI

Applied Scientific Instrumentation

CAD

Computer aided design

CCD

Charged coupled device

CO2

Carbon dioxide

CPU

Central processing unit

CT

Computed tomography

DSLM

Digital scanned light microscopy

EMBL

European Molecular Biology Laboratory

Gb

Gigabyte

GPU

Graphics processing unit

I/O

Input/output

iSPIM

Inverted selective plane illumination microscopy

KIT

Karlsruhe Institute of Technology

LED

Light-emitting diode

mSPIM

Multidirectional selective plane illumination microscopy

NA

Numerical aperture

OPFOS

Orthogonal-plane fluorescence optical sectioning

OPT

Optical projection tomography

PMT

Photon multiplier tube

RAMM

Rapid automated modular microscope

sCMOS

Scientific complementary metal–oxide semiconductor

SIM

Structured illumination microscopy

SPIM

Selective plane illumination microscopy

Tb

Terabyte

Notes

Acknowledgements

E.J.G. acknowledges support from the Fundação para a Ciência e a Tecnologia grant SFRH/BPD/80717/2011. GGM acknowledges the support of the EMBO practical course on 3D Developmental Imaging, and of the Microscopy Unit of Faculdade de Ciências, University of Lisbon. The Ditassa burchelli flower was kindly provided by Prof. Lia Ascensão.

References

  1. Ahrens M, Orger M, Robson D, Li J, Keller P (2013) Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat Methods 10:413–420PubMedCrossRefGoogle Scholar
  2. Baumgart E, Kubitscheck U (2012) Scanned light sheet microscopy with confocal slit detection. Opt Express 20:21805–21814PubMedCrossRefGoogle Scholar
  3. Birk UJ, Darrell A, Konstantinides N, Sarasa-Renedo A, Ripoll J (2011) Improved reconstructions and generalized filtered back projection for optical projection tomography. Appl Opt 50(4):392–398PubMedCrossRefGoogle Scholar
  4. Birk UJ, Rieckher M, Konstantinides N, Darrell A, Sarasa-Renedo A, Meyer H, Tavernarakis N, Ripoll J (2010) Correction for specimen movement and rotation errors for in-vivo Optical Projection Tomography. Biomed Op Express 1(1):87–96CrossRefGoogle Scholar
  5. Breuninger T, Greger K, Stelzer E (2007) Lateral modulation boosts image quality in single plane illumination fluorescence microscopy. Opt Lett 32:1938–1940PubMedCrossRefGoogle Scholar
  6. Cheddad A, Svensson C, Sharpe J, Georgsson F, Ahlgren U (2012) Image processing assisted algorithms for optical projection tomography. IEEE Trans Med Imaging 31:1–15PubMedCrossRefGoogle Scholar
  7. Cremer C, Cremer T (1978) Considerations on a laser-scanning-microscope with high-resolution and depth of field. Microscopica Acta 81:31–44PubMedGoogle Scholar
  8. Denk W, Strickler JH, Webb WW (1990) 2-photon laser scanning fluorescence microscopy. Science 248:73–76PubMedCrossRefGoogle Scholar
  9. Dodt H, Leischner U, Schierloh A, Jahrling N, Mauch C, Deininger K, Deussing J, Eder M, Zieglgansberger W, Becker K (2007) Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods 4:331–336PubMedCrossRefGoogle Scholar
  10. Edelstein A, Amodaj N, Hoover K, Vale R, Stuurman N (2010) Computer control of microscopes using µManager. In: Ausubel FM et al. (eds) Current protocols in molecular biology (Chapter 14): Unit14.20Google Scholar
  11. Fahrbach F, Gurchenkov V, Alessandri K, Nassoy P, Rohrbach A (2013a) Light-sheet microscopy in thick media using scanned Bessel beams and two-photon fluorescence excitation. Opt Express 21:13824–13839PubMedCrossRefGoogle Scholar
  12. Fahrbach F, Voigt F, Schmid B, Helmchen F, Huisken J (2013b) Rapid 3D light-sheet microscopy with a tunable lens. Opt Express 21:21010–21026PubMedCrossRefGoogle Scholar
  13. Fei P, Yu Z, Wang X, Lu P, Fu Y, He Z, Xiong J, Huang Y (2012) High dynamic range optical projection tomography (HDR-OPT). Opt Express 20:8824–8836PubMedCrossRefGoogle Scholar
  14. Friedrich M, Gan Q, Ermolayev V, Harms G (2011) STED-SPIM: stimulated emission depletion improves sheet illumination microscopy eesolution. Biophys J 100:L43–L45PubMedCentralPubMedCrossRefGoogle Scholar
  15. Gao L, Shao L, Higgins C, Poulton J, Peifer M, Davidson M, Wu X, Goldstein B, Betzig E (2012) Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens. Cell 151:1370–1385PubMedCentralPubMedCrossRefGoogle Scholar
  16. Greger K, Swoger J, Stelzer E (2007) Basic building units and properties of a fluorescence single plane illumination microscope. Rev Sci Instrum 78:023705–023707PubMedCrossRefGoogle Scholar
  17. Gu XJ, Zhang QH, Larcom L, Jiang HB (2004) Three-dimensional bioluminescence tomography with model-based reconstruction. Opt Express 12:3996–4000PubMedCrossRefGoogle Scholar
  18. Gualda E, Vale T, Almada P, Feijo J, Martins G, Moreno N (2013) OpenSpinMicroscopy: an open-source integrated microscopy platform. Nat Methods 10:599–600PubMedCrossRefGoogle Scholar
  19. Hagerling R, Pollmann C, Andreas M, Schmidt C, Nurmi H, Adams R, Alitalo K, Andresen V, Schulte-Merker S, Kiefer F (2013) A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. Embo J 32:629–644PubMedCentralPubMedCrossRefGoogle Scholar
  20. Hoh J, Heinz W, Werbin J (2013) Spatial information dynamics during early zebrafish development. Dev Biol 377:126–137PubMedCrossRefGoogle Scholar
  21. Holekamp T, Turaga D, Holy T (2008) Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy. Neuron 57:661–672PubMedCrossRefGoogle Scholar
  22. Huisken J, Stainier D (2007) Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM). Opt Lett 32:2608–2610PubMedCrossRefGoogle Scholar
  23. Huisken J, Stainier D (2009) Selective plane illumination microscopy techniques in developmental biology. Development 136:1963–1975PubMedCentralPubMedCrossRefGoogle Scholar
  24. Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer E (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:1007–1009PubMedCrossRefGoogle Scholar
  25. Jahrling N, Becker K, Dodt H (2009) 3D-reconstruction of blood vessels by ultramicroscopy. Org React 5:227–230Google Scholar
  26. Keller P, Schmidt A, Santella A, Khairy K, Bao Z, Wittbrodt J, Stelzer E (2010) Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy. Nat Methods 7:637–U655PubMedCrossRefGoogle Scholar
  27. Keller P, Schmidt A, Wittbrodt J, Stelzer E (2008) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322:1065–1069PubMedCrossRefGoogle Scholar
  28. Krzic U, Gunther S, Saunders T, Streichan S, Hufnagel L (2012) Multiview light-sheet microscope for rapid in toto imaging. Nat Methods 9:730–U304PubMedCrossRefGoogle Scholar
  29. Lei M, Zumbusch A (2010) Structured light sheet fluorescence microscopy based on four beam interference. Opt Express 18:19232–19241PubMedCrossRefGoogle Scholar
  30. Lindek S, Pick R, Stelzer E (1994) Confocal theta microscope with 3 objective lenses. Rev Sci Instrum 65:3367–3372CrossRefGoogle Scholar
  31. Lorbeer R, Heidrich M, Lorbeer C, Ojeda D, Bicker G, Meyer H, Heisterkamp A (2011) Highly efficient 3D fluorescence microscopy with a scanning laser optical tomograph. Opt Express 19:5419–5430PubMedCrossRefGoogle Scholar
  32. Mertz J, Kim J (2010) Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection. J Biomed Op 15:016027CrossRefGoogle Scholar
  33. Messaoudil C, Boudier T, Sorzano C, Marco S (2007) TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy. BMJ Bioinforma 8:84CrossRefGoogle Scholar
  34. Ntziachristos V (2010) Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods 7:603–614PubMedCrossRefGoogle Scholar
  35. Olarte O, Licea-Rodriguez J, Palero J, Gualda E, Artigas D, Mayer J, Swoger J, Sharpe J, Rocha-Mendoza I, Rangel-Rojo R, Loza-Alvarez P (2012) Image formation by linear and nonlinear digital scanned light-sheet fluorescence microscopy with Gaussian and Bessel beam profiles. Biomed Op Express 3:1492–1505CrossRefGoogle Scholar
  36. Panier T, Romano SA, Olive R, Pietri T, Sumbre G, Candelier R, Debregeas G (2013) Fast functional imaging of multiple brain regions in intact zebrafish larvae using Selective Plane Illumination Microscopy. Frontiers Neural Circuits 7:67CrossRefGoogle Scholar
  37. Pitrone P, Schindelin J, Stuyvenberg L, Preibisch S, Weber M, Eliceiri K, Huisken J, Tomancak P (2013) OpenSPIM: an open-access light-sheet microscopy platform. Nat Methods 10:598–599PubMedCrossRefGoogle Scholar
  38. Planchon T, Gao L, Milkie D, Davidson M, Galbraith J, Galbraith C, Betzig E (2011) Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat Methods 8:417–U468PubMedCentralPubMedCrossRefGoogle Scholar
  39. Preibisch S, Rohlfing T, Hasak MP, Tomancak P (2008) Mosaicing of single plane illumination microscopy images using groupwise registration and fast content-based image fusion — art. no. 69140E. In Medical Imaging 2008 Conference, Vol. 6914, pp E9140-E9140. San Diego, CA: Med SAAP, Soc AP, Radiol CA, Surg, Soc Imaging S, Technol, Soc MIP, Radiol Soc N, Amer, Med SII, Soc Mole Imaging DSCGoogle Scholar
  40. Preibisch S, Saalfeld S, Schindelin J, Tomancak P (2010) Software for bead-based registration of selective plane illumination microscopy data. Nat Methods 7:418–419PubMedCrossRefGoogle Scholar
  41. Ritter J, Veith R, Veenendaal A, Siebrasse J, Kubitscheck U (2010) Light sheet microscopy for single molecule tracking in living tissue. Plos One 5:e11639PubMedCentralPubMedCrossRefGoogle Scholar
  42. Rubio-Guivernau JL, Gurchenkov V, Luengo-Oroz MA, Duloquin L, Bourgine P, Santos A, Peyrieras N, Ledesma-Carbayo MJ (2012) Wavelet-based image fusion in multi-view three-dimensional microscopy. Bioinformatics 28:238–245PubMedCrossRefGoogle Scholar
  43. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J, White D, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682PubMedCrossRefGoogle Scholar
  44. Schmid B, Shah G, Scherf N, Weber M, Thierbach K, Campos C, Roeder I, Aanstad P, Huisken J (2013) High-speed panoramic light-sheet microscopy reveals global endodermal cell dynamics. Nat Commun 4Google Scholar
  45. Sharpe J, Ahlgren U, Perry P, Hill B, Ross A, Hecksher-Sorensen J, Baldock R, Davidson D (2002) Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 296:541–545PubMedCrossRefGoogle Scholar
  46. Shaw PJ, Agard DA, Hiraoka Y, Sedat JW (1989) TIlted view reconstruction in optical microscopy — 3-dimensional reconstruction of Drosophila melanogaster embryo nuclei. Biophys J 55:101–110PubMedCentralPubMedCrossRefGoogle Scholar
  47. Silvestri L, Bria A, Sacconi L, Iannello G, Pavone F (2012) Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain. Opt Express 20:20582–20598PubMedCrossRefGoogle Scholar
  48. Swoger J, Muzzopappa M, Lopez-Schier H, Sharpe J (2011) 4D retrospective lineage tracing using SPIM for zebrafish organogenesis studies. J Biophotonics 4:122–134PubMedCrossRefGoogle Scholar
  49. Swoger J, Verveer P, Greger K, Huisken J, Stelzer E (2007) Multi-view image fusion improves resolution in three-dimensional microscopy. Opt Express 15:8029–8042PubMedCrossRefGoogle Scholar
  50. Tomer R, Khairy K, Amat F, Keller P (2012) Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat Methods 9:755–U181PubMedCrossRefGoogle Scholar
  51. Truong T, Supatto W, Koos D, Choi J, Fraser S (2011) Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat Methods 8:757–U102PubMedCrossRefGoogle Scholar
  52. Vinegoni C, Razansky D, Figueiredo J, Nahrendorf M, Ntziachristos V, Weissleder R (2009) Normalized Born ratio for fluorescence optical projection tomography. Opt Lett 34:319–321PubMedCentralPubMedCrossRefGoogle Scholar
  53. Voie A, Burns D, Spelman F (1993) Orthogonal-plane fluorescence optical sectioning — 3-dimensional imaging of macroscopic biological specimens. J Microsc-Oxford 170:229–236CrossRefGoogle Scholar
  54. Walls J, Sled J, Sharpe J, Henkelman R (2007) Resolution improvement in emission optical projection tomography. Phys Med Biol 52:2775–2790PubMedCrossRefGoogle Scholar
  55. Wang G, Li Y, Jiang M (2004) Uniqueness theorems in bioluminescence tomography. Med Phys 31:2289–2299PubMedCrossRefGoogle Scholar
  56. Weber M, Huisken J (2012) Omnidirectional microscopy. Nat Methods 9:656–657PubMedCrossRefGoogle Scholar
  57. Wohland T, Shi X, Sankaran J, Stelzer E (2010) Single Plane Illumination Fluorescence Correlation Spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments. Opt Express 18:10627–10641PubMedCrossRefGoogle Scholar
  58. Wu Y, Ghitani A, Christensen R, Santella A, Du Z, Rondeau G, Bao Z, Colon-Ramos D, Shroff H (2011) Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans. Proc Natl Acad Sci U S A 108:17708–17713PubMedCentralPubMedCrossRefGoogle Scholar
  59. Zanacchi F, Lavagnino Z, Donnorso M, Del Bue A, Furia L, Faretta M, Diaspro A (2011) Live-cell 3D super-resolution imaging in thick biological samples. Nat Methods 8:1047–1049CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Emilio Gualda
    • 1
  • Nuno Moreno
    • 1
  • Pavel Tomancak
    • 2
  • Gabriel G. Martins
    • 1
    • 3
  1. 1.Instituto Gulbenkian de CiênciaOeirasPortugal
  2. 2.Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
  3. 3.Centro de Biologia AmbientalFaculdade de Ciencias da Universidade de LisboaCampo GrandePortugal

Personalised recommendations