, Volume 251, Issue 2, pp 293–305 | Cite as

Fluorescence lifetime imaging microscopy in the medical sciences

Special Issue: New/Emerging Techniques in Biological Microscopy


The steady improvement in the imaging of cellular processes in living tissue over the last 10–15 years through the use of various fluorophores including organic dyes, fluorescent proteins and quantum dots, has made observing biological events common practice. Advances in imaging and recording technology have made it possible to exploit a fluorophore's fluorescence lifetime. The fluorescence lifetime is an intrinsic parameter that is unique for each fluorophore, and that is highly sensitive to its immediate environment and/or the photophysical coupling to other fluorophores by the phenomenon Förster resonance energy transfer (FRET). The fluorescence lifetime has become an important tool in the construction of optical bioassays for various cellular activities and reactions. The measurement of the fluorescence lifetime is possible in two formats; time domain or frequency domain, each with their own advantages. Fluorescence lifetime imaging applications have now progressed to a state where, besides their utility in cell biological research, they can be employed as clinical diagnostic tools. This review highlights the multitude of fluorophores, techniques and clinical applications that make use of fluorescence lifetime imaging microscopy (FLIM).


Organic dyes Quantum dots (QDs) Fluorescent proteins (FPs) Quenchers Förster resonance energy transfer (FRET) Fluorescence lifetime imaging microscopy (FLIM) Time-domain FLIM (TD FLIM) Frequency-domain FLIM (FD FLIM) Endogenous fluorophores 



This work was supported by the Cluster of Excellence and DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain.

Conflict of interest



  1. Abad MFC, Di Benedetto G, Magalhães PJ, Filippin L, Pozzan T (2004) Mitochondrial pH monitored by a new engineered green fluorescent protein mutant. J Biol Chem 279:11521–11529PubMedGoogle Scholar
  2. Agronskaia AV, Tertoolen L, Gerritsen HC (2003) High frame rate fluorescence lifetime imaging. J Phys Appl Phys 36:1655–1662Google Scholar
  3. Ai H, Hazelwood KL, Davidson MW, Campbell RE (2008) Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors. Nat Methods 5:401–403PubMedGoogle Scholar
  4. Åkerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci 99:12617–12621PubMedCentralPubMedGoogle Scholar
  5. Akrap N, Seidel T, Barisas BG (2010) Förster distances for fluorescence resonant energy transfer between mCherry and other visible fluorescent proteins. Anal Biochem 402:105–106PubMedCentralPubMedGoogle Scholar
  6. Ballew RM, Demas JN (1991) Error analysis of the rapid lifetime determination method for single exponential decays with a non-zero baseline. Anal Chim Acta 245:121–127Google Scholar
  7. Ballew RM, Demas JN (1989) An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays. Anal Chem 61:30–33Google Scholar
  8. Bastiaens PI, Squire A (1999) Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol 9:48–52PubMedGoogle Scholar
  9. Becker W (2012) Fluorescence lifetime imaging — techniques and applications. J Microsc 247:119–136PubMedGoogle Scholar
  10. Becker W, Bergmann A, Biscotti G, Koenig K, Riemann I, Kelbauskas L, Biskup C (2004) High-speed FLIM data acquisition by time-correlated single-photon counting. Biomed. Opt. 27–35Google Scholar
  11. Becker W, Su B, Bergmann A (2009) Fast-acquisition multispectral FLIM by parallel TCSPC. SPIE Proc 7183:718305–718305, 5Google Scholar
  12. Berney C, Danuser G (2003) FRET or no FRET: a quantitative comparison. Biophys J 84:3992–4010PubMedCentralPubMedGoogle Scholar
  13. Bindewald A (2005) Lower limits of fluorescein and indocyanine green dye for digital cSLO fluorescence angiography. Br J Ophthalmol 89:1609–1615PubMedCentralPubMedGoogle Scholar
  14. Bruchez MP (2011) Quantum dots find their stride in single molecule tracking. Curr Opin Chem Biol 15:775–780PubMedCentralPubMedGoogle Scholar
  15. Bulina ME, Chudakov DM, Britanova OV, Yanushevich YG, Staroverov DB, Chepurnykh TV, Merzlyak EM, Shkrob MA, Lukyanov S, Lukyanov KA (2005) A genetically encoded photosensitizer. Nat Biotechnol 24:95–99PubMedGoogle Scholar
  16. Bunt G, Wouters FS (2004) Visualization of molecular activities inside living cells with fluorescent labels. Int Rev Cytol 237:205–277PubMedGoogle Scholar
  17. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805PubMedGoogle Scholar
  18. Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018PubMedGoogle Scholar
  19. Chance B (1976) Pyridine nucleotide as an indicator of the oxygen requirements for energy-linked functions of mitochondria. Circ Res 38:I31–I38PubMedGoogle Scholar
  20. Chance B, Schoener B, Oshino R, Itshak F, Nakase Y (1979) Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals. J Biol Chem 254:4764–4771PubMedGoogle Scholar
  21. Chen F, Gerion D (2004) Fluorescent CdSe/ZnS nanocrystal–peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett 4:1827–1832Google Scholar
  22. Chen Y, Mills JD, Periasamy A (2003) Protein localization in living cells and tissues using FRET and FLIM. Differentiation 71:528–541PubMedGoogle Scholar
  23. Clegg RM (1995) Fluorescence resonance energy transfer. Curr Opin Biotechnol 6:103–110PubMedGoogle Scholar
  24. Cole MJ, Siegel J, Webb SED, Jones R, Dowling K, Dayel MJ, Parsons-Karavassilis D, French PMW, Lever MJ, Sucharov LOD (2001) Time-domain whole-field fluorescence lifetime imaging with optical sectioning. J Microsc 203:246–257PubMedGoogle Scholar
  25. Colyer RA, Lee C, Gratton E (2008) A novel fluorescence lifetime imaging system that optimizes photon efficiency. Microsc Res Tech 71:201–213PubMedGoogle Scholar
  26. Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY (1995) Understanding, improving and using green fluorescent proteins. Trends Biochem Sci 20:448–455PubMedGoogle Scholar
  27. Cui B, Wu C, Chen L, Ramirez A, Bearer EL, Li W-P, Mobley WC, Chu S (2007) One at a time, live tracking of NGF axonal transport using quantum dots. Proc Natl Acad Sci 104:13666–13671PubMedCentralPubMedGoogle Scholar
  28. Delori FC, Staurenghi G, Arend O, Dorey CK, Goger DG, Weiter JJ (1995) In vivo measurement of lipofuscin in Stargardt’s disease–fundus flavimaculatus. Invest Ophthalmol Vis Sci 36:2327–2331PubMedGoogle Scholar
  29. Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94:L14–L16PubMedCentralPubMedGoogle Scholar
  30. Dimitrow E, Riemann I, Ehlers A, Koehler MJ, Norgauer J, Elsner P, König K, Kaatz M (2009) Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis. Exp Dermatol 18:509–515PubMedGoogle Scholar
  31. Don Paul C, Kiss C, Traore DAK, Gong L, Wilce MCJ, Devenish RJ, Bradbury A, Prescott M (2013) Phanta: a non-fluorescent photochromic acceptor for pcFRET. PLoS ONE 8:e75835PubMedCentralPubMedGoogle Scholar
  32. Don Paul C, Traore DAK, Byres E, Rossjohn J, Devenish RJ, Kiss C, Bradbury A, Wilce MCJ, Prescott M (2011) Expression, purification, crystallization and preliminary X-ray analysis of eCGP123, an extremely stable monomeric green fluorescent protein with reversible photoswitching properties. Acta Crystallograph Sect F Struct Biol Cryst Commun 67:1266–1268Google Scholar
  33. Dowling K, Hyde SCW, Dainty JC, French PMW, Hares JD (1997) 2-D fluorescence lifetime imaging using a time-gated image intensifier. Opt Commun 135:27–31Google Scholar
  34. Drezerk R, Brookner C, Pavlova I, Boiko I, Malpica A, Lotan R, Follen M, Richards-Kortum R (2001) Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia. Photochem Photobiol 73:636–641Google Scholar
  35. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762PubMedGoogle Scholar
  36. Dymoke-Bradshaw AKL (1993) Impact of high-voltage pulse technology on high-speed photography. Proc SPIE 1757:2–6Google Scholar
  37. Einbock W, Moessner A, Schnurrbusch UEK, Holz FG, Wolf S, for the FAM Study Group (2004) Changes in fundus autofluorescence in patients with age-related maculopathy. Correlation to visual function: a prospective study. Graefes Arch Clin Exp Ophthalmol 243:300–305PubMedGoogle Scholar
  38. Eldred GE, Katz ML (1988) Fluorophores of the human retinal pigment epithelium: separation and spectral characterization. Exp Eye Res 47:71–86PubMedGoogle Scholar
  39. Elson D, Requejo-Isidro J, Munro I, Reavell F, Siegel J, Suhling K, Tadrous P, Benninger R, Lanigan P, McGinty J (2004) Time-domain fluorescence lifetime imaging applied to biological tissue. Photochem Photobiol Sci 3:795–801PubMedGoogle Scholar
  40. Elson DS, Jo JA, Marcu L (2007) Miniaturized side-viewing imaging probe for fluorescence lifetime imaging (FLIM): validation with fluorescence dyes, tissue structural proteins and tissue specimens. New J Phys 9:127– 127Google Scholar
  41. Esposito A, Dohm CP, Bähr M, Wouters FS (2007) Unsupervised fluorescence lifetime imaging microscopy for high content and high throughput screening. Mol Amp Cell Proteomics 6:1446–1454Google Scholar
  42. Esposito A, Oggier T, Gerritsen H, Lustenberger F, Wouters F (2005) All-solid-state lock-in imaging for wide-field fluorescence lifetime sensing. Opt Express 13:9812–9821PubMedGoogle Scholar
  43. Esposito A, Wouters FS (2004) Fluorescence lifetime imaging microscopy. Curr Protoc Cell Biol Editor Board Juan Bonifacino Al Chapter 4:Unit 4.14Google Scholar
  44. Faltin B, Zengerle R, von Stetten F (2013) Current methods for fluorescence-based universal sequence-dependent detection of nucleic acids in homogenous assays and clinical applications. Clin Chem 59:1567–1582PubMedGoogle Scholar
  45. Fatakdawala H, Poti S, Zhou F, Sun Y, Bec J, Liu J, Yankelevich DR, Tinling SP, Gandour-Edwards RF, Farwell DG, Marcu L (2013) Multimodal in vivo imaging of oral cancer using fluorescence lifetime, photoacoustic and ultrasound techniques. Biomed Opt Express 4:1724–1741PubMedCentralPubMedGoogle Scholar
  46. Feeney-Burns L, Berman ER, Rothman H (1980) Lipofuscin of human retinal pigment epithelium. Am J Ophthalmol 90:783–791PubMedGoogle Scholar
  47. Fine S, Hansen WP (1971) Optical second harmonic generation in biological systems. Appl Opt 10:2350–2353PubMedGoogle Scholar
  48. Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys 437:55–75Google Scholar
  49. Freund I, Deutsch M (1986) Second-harmonic microscopy of biological tissue. Opt Lett 11:94PubMedGoogle Scholar
  50. Freund I, Deutsch M, Sprecher A (1986) Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon. Biophys J 50:693–712PubMedCentralPubMedGoogle Scholar
  51. Ganesan S, Ameer-Beg SM, Ng TT, Vojnovic B, Wouters FS (2006) A dark yellow fluorescent protein (YFP)-based Resonance Energy-Accepting Chromoprotein (REACh) for Förster resonance energy transfer with GFP. Proc Natl Acad Sci U S A 103:4089–4094PubMedCentralPubMedGoogle Scholar
  52. Gill R, Le Ru EC (2011) Fluorescence enhancement at hot-spots: the case of Ag nanoparticle aggregates. Phys Chem Chem Phys 13:16366PubMedGoogle Scholar
  53. Goedhart J, von Stetten D, Noirclerc-Savoye M, Lelimousin M, Joosen L, Hink MA, van Weeren L, Gadella TWJ Jr, Royant A (2012) Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93 %. Nat Commun 3:751PubMedCentralPubMedGoogle Scholar
  54. Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276:29188–29194PubMedGoogle Scholar
  55. Gussin HA, Tomlinson ID, Little DM, Warnement MR, Qian H, Rosenthal SJ, Pepperberg DR (2006) Binding of muscimol-conjugated quantum sots to GABA C receptors. J Am Chem Soc 128:15701–15713PubMedCentralPubMedGoogle Scholar
  56. He L, Wu X, Simone J, Hewgill D, Lipsky PE (2005) Determination of tumor necrosis factor receptor-associated factor trimerization in living cells by CFP- > YFP- > mRFP FRET detected by flow cytometry. Nucleic Acids Res 33:e61–e61PubMedCentralPubMedGoogle Scholar
  57. Ishibashi T, Murata T, Hangai M, Nagai R, Horiuchi S, Lopez PF, Hinton DR, Ryan SJ (1998) Advanced glycation end products in age-related macular degeneration. Arch Ophthalmol 116:1629–1632PubMedGoogle Scholar
  58. Kantelhardt SR, Leppert J, Krajewski J, Petkus N, Reusche E, Tronnier VM, Hüttmann G, Giese A (2007) Imaging of brain and brain tumor specimens by time-resolved multiphoton excitation microscopy ex vivo. Neuro-Oncol 9:103–112PubMedCentralPubMedGoogle Scholar
  59. Katsoulidou V, Bergmann A, Becker W (2007) How fast can TCSPC FLIM be made? Proc SPIE 6771:67710B-1–67710B-7Google Scholar
  60. Kikuchi A, Fukumura E, Karasawa S, Mizuno H, Miyawaki A, Shiro Y (2008) Structural characterization of a thiazoline-containing chromophore in an orange fluorescent protein, monomeric Kusabira orange. Biochem 47:11573–11580Google Scholar
  61. König K, Riemann I (2003) High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution. J Biomed Opt 8:432PubMedGoogle Scholar
  62. König K, Uchugonova A, Gorjup E (2011) Multiphoton fluorescence lifetime imaging of 3D-stem cell spheroids during differentiation. Microsc Res Tech 74:9–17PubMedGoogle Scholar
  63. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New YorkGoogle Scholar
  64. Lakowicz JR, Szmacinski H, Nowaczyk K, Johnson ML (1992) Fluorescence lifetime imaging of free and protein-bound NADH. Proc Natl Acad Sci 89:1271–1275PubMedCentralPubMedGoogle Scholar
  65. Lange R, Seitz P, Biber A, Schwarte R (1999) Time-of-flight range imaging with a custom solid state image sensor. Proc SPIE 1823:180–191Google Scholar
  66. Llopis J, McCaffery JM, Miyawaki A, Farquhar MG, Tsien RY (1998) Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci 95:6803–6808PubMedCentralPubMedGoogle Scholar
  67. Mandal G, Darragh M, Wang YA, Heyes CD (2013) Cadmium-free quantum dots as time-gated bioimaging probes in highly-autofluorescent human breast cancer cells. Chem Commun 49:624Google Scholar
  68. Markwardt ML, Kremers G-J, Kraft CA, Ray K, Cranfill PJC, Wilson KA, Day RN, Wachter RM, Davidson MW, Rizzo MA (2011) An improved cerulean fluorescent protein with enhanced brightness and reduced reversible photoswitching. PloS One 6:e17896PubMedCentralPubMedGoogle Scholar
  69. Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17:969–973PubMedGoogle Scholar
  70. McNamara G, Boswell CA (2008) A thousand proteins of light: 15 years of advances in fluorescent proteins. In: Mendez-Vilas A, Diaz J (eds) Modern research and educational topics in microscopy. Formatex, Badajoz, p 287Google Scholar
  71. Miesenböck G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195PubMedGoogle Scholar
  72. Mitchell GP, Mirkin CA, Letsinger RL (1999) Programmed assembly of DNA functionalized quantum dots. J Am Chem Soc 121:8122–8123Google Scholar
  73. Mitra RD, Silva CM, Youvan DC (1996) Fluorescence resonance energy transfer between blue-emitting and red-shifted excitation derivatives of the green fluorescent protein. Gene 173:13–17PubMedGoogle Scholar
  74. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887PubMedGoogle Scholar
  75. Nakashima N, Yoshihara K, Tanaka F, Yagi K (1980) Picosecond fluorescence lifetime of the coenzyme of d-amino acid oxidase. J Biol Chem 255:5261–5263PubMedGoogle Scholar
  76. Nann T (2005) Phase-transfer of CdSe@ZnS quantum dots using amphiphilic hyperbranched polyethylenimine. Chem Commun 2005:1735–1736Google Scholar
  77. O’Connor DV (1984) Time-correlated single photon counting. Academic Press, LondonGoogle Scholar
  78. Oggier T, Lehmann M, Kaufmann R, Schweizer M, Richter M, Metzler P, Lang G, Lustenberger F, Blanc N (2004) An all-solid-state optical range camera for 3D real-time imaging with sub-centimeter depth resolution (SwissRanger). Proc SPIE 5249:534–545Google Scholar
  79. Parak WJ, Gerion D, Zanchet D, Woerz AS, Pellegrino T, Micheel C, Williams SC, Seitz M, Bruehl RE, Bryant Z, Bustamante C, Bertozzi CR, Alivisatos AP (2002) Conjugation of DNA to silanized colloidal semiconductor nanocrystalline quantum dots. Chem Mater 14:2113–2119Google Scholar
  80. Parak WJ, Pellegrino T, Plank C (2005) Labelling of cells with quantum dots. Nanotechnology 16:R9–R25PubMedGoogle Scholar
  81. Patterson GH, Knobel SM, Sharif WD, Kain SR, Piston DW (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 73:2782–2790PubMedCentralPubMedGoogle Scholar
  82. Patterson GH, Piston DW, Barisas BG (2000) Förster distances between green fluorescent protein pairs. Anal Biochem 284:438–440PubMedGoogle Scholar
  83. Pédelacq J-D, Cabantous S, Tran T, Terwilliger TC, Waldo GS (2005) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24:79–88PubMedGoogle Scholar
  84. Pellegrino T, Parak WJ, Boudreau R, Gerion D, Alivisatos AP, Larabell CA (2003) Quantum dot-based cell motility assay. Differentiation 71:542–548PubMedGoogle Scholar
  85. Petchprayoon C, Marriott G (2010) Synthesis and spectroscopic characterization of red-shifted spironaphthoxazine based optical switch probes. Tetrahedron Lett 51:6753–5755PubMedCentralPubMedGoogle Scholar
  86. Pettikiriarachchi A, Gong L, Perugini MA, Devenish RJ, Prescott M (2012) Ultramarine, a chromoprotein acceptor for Förster resonance energy transfer. PLoS ONE 7:e41028PubMedCentralPubMedGoogle Scholar
  87. Pons T, Medintz IL, Sapsford KE, Higashiya S, Grimes AF, English DS, Mattoussi H (2007) On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles. Nano Lett 7:3157–3164PubMedGoogle Scholar
  88. Pons T, Pic E, Lequeux N, Cassette E, Bezdetnaya L, Guillemin F, Marchal F, Dubertret B (2010) Cadmium-free CuInS 2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity. ACS Nano 4:2531–2538PubMedGoogle Scholar
  89. Ramanujam N, Richards-Kortum R, Thomsen S, Mahadevan-Jansen A, Follen M, Chance B (2001) Low temperature fluorescence imaging of freeze-trapped human cervical tissues. Opt Express 8:335–343PubMedGoogle Scholar
  90. Redford GI, Clegg RM (2005) Polar plot representation for frequency-domain analysis of fluorescence lifetimes. J Fluoresc 15:805–815PubMedGoogle Scholar
  91. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775PubMedGoogle Scholar
  92. Rowley MI, Barber PR, Coolen ACC, Vojnovic B (2011) Bayesian analysis of fluorescence lifetime imaging data. pp 790325–790325–12Google Scholar
  93. Sanchez WY, Prow TW, Sanchez WH, Grice JE, Roberts MS (2010) Analysis of the metabolic deterioration of ex vivo skin from ischemic necrosis through the imaging of intracellular NAD(P)H by multiphoton tomography and fluorescence lifetime imaging microscopy. J Biomed Opt 15:046008PubMedGoogle Scholar
  94. Schweitzer D, Schenke S, Hammer M, Schweitzer F, Jentsch S, Birckner E, Becker W, Bergmann A (2007) Towards metabolic mapping of the human retina. Microsc Res Tech 70:410–419PubMedGoogle Scholar
  95. Scully AD, MacRobert AJ, Botchway S, O’Neill P, Parker AW, Ostler RB, Phillips D (1996) Development of a laser-based fluorescence microscope with subnanosecond time resolution. J Fluoresc 6:119–125PubMedGoogle Scholar
  96. Scully AD, Ostler RB, Phillips D, O’Neill P, Townsend KMS, Parker AW, MacRobert AJ (1997) Application of fluorescence lifetime imaging microscopy to the investigation of intracellular PDT mechanisms. Bioimaging 5:9–18Google Scholar
  97. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909PubMedGoogle Scholar
  98. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239PubMedGoogle Scholar
  99. Skala MC, Riching KM, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri KW, White JG, Ramanujam N (2007) In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci 104:19494–19499PubMedCentralPubMedGoogle Scholar
  100. Straub M, Hell SW (1998) Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope. Appl Phys Lett 73:1769Google Scholar
  101. Subach FV, Zhang L, Gadella TWJ, Gurskaya NG, Lukyanov KA, Verkhusha VV (2010) Red fluorescent protein with reversibly photoswitchable absorbance for photochromic FRET. Chem Biol 17:745–755PubMedCentralPubMedGoogle Scholar
  102. Sun Y, Phipps J, Elson DS, Stoy H, Tinling S, Meier J, Poirier B, Chuang FS, Farwell DG, Marcu L (2009) Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma. Opt Lett 34:2081–2083PubMedCentralPubMedGoogle Scholar
  103. Terai T, Nagano T (2013) Small-molecule fluorophores and fluorescent probes for bioimaging. Pflüg Arch - Eur J Physiol 465:347–359Google Scholar
  104. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544PubMedGoogle Scholar
  105. van Munster EB, Gadella TWJ (2005) Fluorescence lifetime imaging microscopy (FLIM). In: Rietdorf J (ed) Microscopy Techniques. Springer, Berlin, pp 143–175Google Scholar
  106. Vegh RB, Solntsev KM, Kuimova MK, Cho S, Liang Y, Loo BLW, Tolbert LM, Bommarius AS (2011) Reactive oxygen species in photochemistry of the red fluorescent protein “Killer Red. Chem Commun 47:4887Google Scholar
  107. von Rückmann A, Fitzke FW, Bird AC (1995) Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Br J Ophthalmol 79:407–412Google Scholar
  108. von Rückmann A, Fitzke FW, Fan J, Halfyard A, Bird AC (2002) Abnormalities of fundus autofluorescence in central serous retinopathy. Am J Ophthalmol 133:780–786Google Scholar
  109. Waggoner A (2006) Fluorescent labels for proteomics and genomics. Curr Opin Chem Biol 10:62–66PubMedGoogle Scholar
  110. Walling MA, Novak JA, Shepard JRE (2009) Quantum dots for live cell and in vivo imaging. Int J Mol Sci 10:441–491PubMedCentralPubMedGoogle Scholar
  111. Wang Q, Xu Y, Zhao X, Chang Y, Liu Y, Jiang L, Sharma J, Seo D-K, Yan H (2007) A facile one-step in situ functionalization of quantum dots with preserved photoluminescence for bioconjugation. J Am Chem Soc 129:6380–6381PubMedGoogle Scholar
  112. Wang XF, Periasamy A, Herman B, Coleman DM (1992) Fluorescence lifetime imaging microscopy (FLIM): instrumentation and applications. Crit Rev Anal Chem 23:369–395Google Scholar
  113. Wang XF, Uchida T, Coleman DM, Minami S (1991) A two-dimensional fluorescence lifetime imaging system using a gated image intensifier. Appl Spectrosc 45:360–366Google Scholar
  114. Webb SED, Gu Y, Lévêque-Fort S, Siegel J, Cole MJ, Dowling K, Jones R, French PMW, Neil MAA, Juškaitis R, Sucharov LOD, Wilson T, Lever MJ (2002) A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning. Rev Sci Instrum 73:1898Google Scholar
  115. Wu P, Brand L (1994) Resonance energy transfer: methods and applications. Anal Biochem 218:1–13PubMedGoogle Scholar
  116. Xing Y, Chaudry Q, Shen C, Kong KY, Zhau HE, Chung LW, Petros JA, O’Regan RM, Yezhelyev MV, Simons JW, Wang MD, Nie S (2007) Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat Protoc 2:1152–1165PubMedGoogle Scholar
  117. Zhang W, Zhou Y, Becker DF (2004) Regulation of PutA–membrane associations by flavin adenine dinucleotide reduction. Biochem 43:13165–13174Google Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • René Ebrecht
    • 1
    • 2
  • Craig Don Paul
    • 1
    • 2
  • Fred S. Wouters
    • 1
    • 2
  1. 1.Department of Neuro- and Sensory PhysiologyUniversity Medicine GöttingenGöttingenGermany
  2. 2.Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)GöttingenGermany

Personalised recommendations