, Volume 250, Issue 6, pp 1283–1293

Organelle acidification is important for localisation of vacuolar proteins in Saccharomyces cerevisiae

Original Article


The acidic environments in the vacuole and other acidic organelles are important for many cellular processes in eukaryotic cells. In this study, we comprehensively investigated the roles of organelle acidification in vacuolar protein localisation in Saccharomyces cerevisiae. After repressing the acidification of acidic compartments by treatment with concanamycin A, a specific inhibitor of vacuolar H+-ATPase (V-ATPase), we examined the localisation of GFP-fused proteins that were predicted to localise in the vacuolar lumen or on the vacuolar membrane. Of the 73 proteins examined, 19 changed their localisation to the cytoplasmic region. Localisation changes were evaluated quantitatively using the image processing programme CalMorph. The delocalised proteins included vacuolar hydrolases, V-ATPase subunits, transporters and enzymes for membrane biogenesis, as well as proteins required for protein transport. These results suggest that many alterations in the localisation of vacuolar proteins occur after loss of the acidification of acidic compartments.


Vacuole Acidic compartments Concanamycin A CalMorph V-ATPase Saccharomyces cerevisiae 



Acidic compartments


Alkaline phosphatase


Concanamycin A


Carboxypeptidase S


Carboxypeptidase Y


Differential interference contrast




European Saccharomyces cerevisiae archive for functional analysis


Gene ontology


Endosomal network


Proteinase A




Saccharomyces genome database


Vacuolar proton-translocating ATPases

Supplementary material

709_2013_510_MOESM1_ESM.pdf (80 kb)
ESM 1(PDF 80.2 kb)
709_2013_510_MOESM2_ESM.pdf (162 kb)
Supplementary Fig. 1(PDF 162 kb)


  1. Banta LM, Robinson JS, Klionsky DJ, Emr SD (1988) Organelle assembly in yeast: characterization of yeast mutants defective in vacuolar biogenesis and protein sorting. J Cell Biol 107(4):1369–1383PubMedCrossRefGoogle Scholar
  2. Bowers K, Stevens TH (2005) Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1744(3):438–454PubMedCrossRefGoogle Scholar
  3. Bowman EJ, Graham LA, Stevens TH, Bowman BJ (2004) The bafilomycin/concanamycin binding site in subunit c of the V-ATPases from Neurospora crassa and Saccharomyces cerevisiae. J Biol Chem 279(32):33131–33138PubMedCrossRefGoogle Scholar
  4. Diakov TT, Kane PM (2010) Regulation of vacuolar proton-translocating ATPase activity and assembly by extracellular pH. J Biol Chem. 285(31):23771–23778Google Scholar
  5. Dubouloz F, Deloche O, Wanke V, Cameroni E, De Virgilio C (2005) The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol Cell 19(1):15–26PubMedCrossRefGoogle Scholar
  6. Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686–691PubMedCrossRefGoogle Scholar
  7. Jin N, Chow CY, Liu L, Zolov SN, Bronson R, Davisson M, Petersen JL, Zhang Y, Park S, Duex JE, Goldowitz D, Meisler MH, Weisman LS (2008) VAC14 nucleates a protein complex essential for the acute interconversion of PI3P and PI(3,5)P2 in yeast and mouse. EMBO J 27(24):3221–3234Google Scholar
  8. Kane PM (2006) The where, when, and how of organelle acidification by the yeast vacuolar H+-ATPase. Microbiol Mol Biol Rev 70(1):177–191PubMedCrossRefGoogle Scholar
  9. Kane PM, Parra KJ (2000) Assembly and regulation of the yeast vacuolar H(+)-ATPase. J Exp Biol 203(Pt 1):81–87PubMedGoogle Scholar
  10. Kawasaki-Nishi S, Bowers K, Nishi T, Forgac M, Stevens TH (2001) The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis. J Biol Chem 276(50):47411–47420Google Scholar
  11. Kihara A, Sakuraba H, Ikeda M, Denpoh A, Igarashi Y (2008) Membrane topology and essential amino acid residues of Phs1, a 3-hydroxyacyl-CoA dehydratase involved in very long-chain fatty acid elongation. J Biol Chem 283(17):11199–11209PubMedCrossRefGoogle Scholar
  12. Klionsky DJ, Emr SD (1989) Membrane protein sorting: biosynthesis, transport and processing of yeast vacuolar alkaline phosphatase. EMBO J 8(8):2241–2250PubMedGoogle Scholar
  13. Klionsky DJ, Herman PK, Emr SD (1990) The fungal vacuole: composition, function, and biogenesis. Microbiol Rev 54(3):266–292PubMedGoogle Scholar
  14. Li SC, Kane PM (2009) The yeast lysosome-like vacuole: endpoint and crossroads. Biochim Biophys Acta 1793(4):650–663PubMedCrossRefGoogle Scholar
  15. MacDonald C, Stringer DK, Piper RC (2012) Sna3 is an Rsp5 adaptor protein that relies on ubiquitination for its MVB sorting. Traffic 13(4):586–598PubMedCrossRefGoogle Scholar
  16. Makuc J, Paiva S, Schauen M, Krämer R, André B, Casal M, Leão C, Boles E (2001) The putative monocarboxylate permeases of the yeast Saccharomyces cerevisiae do not transport monocarboxylic acids across the plasma membrane. Yeast 18(12):1131–1143PubMedCrossRefGoogle Scholar
  17. Manolson MF, Wu B, Proteau D, Taillon BE, Roberts BT, Hoyt MA, Jones EW (1994) STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H(+)-ATPase subunit Vph1p. J Biol Chem 269(19):14064–14074Google Scholar
  18. Mellman I, Fuchs R, Helenius A (1986) Acidification of the endocytic and exocytic pathways. Annu Rev Biochem 55:663–700PubMedCrossRefGoogle Scholar
  19. Mesecke N, Spang A, Deponte M, Herrmann JM (2008) A novel group of glutaredoxins in the cis-Golgi critical for oxidative stress resistance. Mol Biol Cell 19(6):2673–2680PubMedCrossRefGoogle Scholar
  20. Michell RH, Dove SK (2009) A protein complex that regulates PtdIns(3,5)P2 levels. EMBO J 28(2):86–87Google Scholar
  21. Morano KA, Klionsky DJ (1994) Differential effects of compartment deacidification on the targeting of membrane and soluble proteins to the vacuole in yeast. J Cell Sci 107(Pt 10):2813–2824PubMedGoogle Scholar
  22. Negishi T, Nogami S, Ohya Y (2009) Multidimensional quantification of subcellular morphology of Saccharomyces cerevisiae using CalMorph, the high-throughput image-processing program. J Biotechnol 141(3–4):109–117PubMedCrossRefGoogle Scholar
  23. Ohya Y, Sese J, Yukawa M, Sano F, Nakatani Y, Saito TL, Saka A, Fukuda T, Ishihara S, Oka S, Suzuki G, Watanabe M, Hirata A, Ohtani M, Sawai H, Fraysse N, Latgé JP, François JM, Aebi M, Tanaka S, Muramatsu S, Araki H, Sonoike K, Nogami S, Morishita S (2005) High-dimensional and large-scale phenotyping of yeast mutants. Proc Natl Acad Sci U S A 102(52):19015–19020PubMedCrossRefGoogle Scholar
  24. Palma M, Goffeau A, Spencer-Martins I, Baret PV (2007) A phylogenetic analysis of the sugar porters in hemiascomycetous yeasts. J Mol Microbiol Biotechnol 12(3–4):241–248PubMedCrossRefGoogle Scholar
  25. Rue SM, Mattei S, Saksena S, Emr SD (2008) Novel Ist1-Did2 complex functions at a late step in multivesicular body sorting. Mol Biol Cell 19(2):475–484PubMedCrossRefGoogle Scholar
  26. Schluter C, Lam KK, Brumm J, Wu BW, Saunders M, Stevens TH, Bryan J, Conibear E (2008) Global analysis of yeast endosomal transport identifies the vps55/68 sorting complex. Mol Biol Cell 19(4):1282–1294PubMedCrossRefGoogle Scholar
  27. Tkach JM, Yimit A, Lee AY, Riffle M, Costanzo M, Jaschob D, Hendry JA, Ou J, Moffat J, Boone C, Davis TN, Nislow C, Brown GW (2012) Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol 14(9):966–976Google Scholar
  28. Umemoto N, Yoshihisa T, Hirata R, Anraku Y (1990) Roles of the VMA3 gene product, subunit c of the vacuolar membrane H(+)-ATPase on vacuolar acidification and protein transport. A study with VMA3-disrupted mutants of Saccharomyces cerevisiae. J Biol Chem 265(30):18447–18453PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Risa Matsumoto
    • 1
  • Kuninori Suzuki
    • 2
  • Yoshikazu Ohya
    • 1
  1. 1.The Department of Integrated Biosciences, Graduate School of Frontier SciencesUniversity of TokyoKashiwaJapan
  2. 2.Bioimaging Center, Graduate School of Frontier SciencesUniversity of TokyoKashiwaJapan

Personalised recommendations