Protoplasma

, Volume 250, Issue 4, pp 833–850 | Cite as

Sperm ultrastructure in the diatoms Melosira and Thalassiosira and the significance of the 9 + 0 configuration

  • Masahiko Idei
  • Keigo Osada
  • Shinya Sato
  • Takeshi Nakayama
  • Tamotsu Nagumo
  • David G. Mann
Original Article

Abstract

The most complete account to date of the ultrastructure of flagellate cells in diatoms is given for the sperm of Thalassiosira lacustris and Melosira moniliformis var. octogona, based on serial sections. The sperm are uniflagellate, with no trace of a second basal body, and possess a 9 + 0 axoneme. The significance of the 9 + 0 configuration is discussed: lack of the central pair microtubules and radial spokes does not compromise the mastigoneme-bearing flagellum’s capacity to perform planar beats and thrust reversal and may perhaps be related to sensory/secretory function of the sperm flagellum during plasmogamy. The basal bodies of diatoms are confirmed to contain doublets rather than triplets, which may correlate with the absence of some centriolar proteins found in most cells producing active flagella. Whereas Melosira possesses a normal cartwheel structure in the long basal body, no such structure is present in Thalassiosira, which instead possesses ‘intercalary fibres’ linking the basal body doublets. No transitional helices or transitional plates are present in either species studied. Cones of microtubules are associated with the basal body and partially enclose the nucleus in M. moniliformis and T. lacustris. They do not appear to be true microtubular roots and may arise through transformation of the meiosis II spindle. A close association between cone microtubules and tubules containing mastigonemes may indicate a function in intracellular mastigoneme transport. No correlation can yet be detected between methods of spermatogenesis and phylogeny in diatoms, contrary to previous suggestions.

Keywords

9 + 0 configuration Basal bodies Diatoms Flagellar ultrastructure Mastigonemes Sperm 

Notes

Acknowledgments

We thank Dr. I. Inouye (Tsukuba University) for his helpful suggestions about sectioning and TEM observation. We also thank to Dr. K. Hasegawa and Dr. K. Ogane for the contribution to digitisation of films.

Supplementary material

709_2012_465_MOESM2_ESM.psd (1.7 mb)
Supplementary Fig. 1 Selected serial transverse sections from the flagellum to the basal body in Melosira moniliformis var. octogona. TEM. ae Enlargements of Fig. 8b, c, e, k and n, respectively. Scale bar = 200 nm (in a) (PSD 1791 kb)
ESM 2

(MPG 5632 kb)

References

  1. Andersen RA (1987) Synurophyceae classis nov., a new class of algae. Am J Bot 74:337–353CrossRefGoogle Scholar
  2. Andersen RA (1991) The cytoskeleton of chromophyte algae. Protoplasma 164:143–159CrossRefGoogle Scholar
  3. Andersen RA (2004) Biology and systematics of heterokont and haptophyte algae. Am J Bot 91:1508–1522PubMedCrossRefGoogle Scholar
  4. Andersen RA, Barr DJS, Lynn DH, Melkonian M, Moestrup Ø, Sleigh MA (1991) Terminology and nomenclature of the cytoskeletal elements associated with the flagellar/ciliary apparatus in protists. Protoplasma 164:1–8CrossRefGoogle Scholar
  5. Andersen RA, Saunders GW, Paskind MP, Sexton JP (1993) Ultrastructure and 18S rRNA gene sequence for Pelagomonas calceolata gen. et sp. nov. and the description of a new algal class, the Pelagophyceae classis nov. J Phycol 29:701–715CrossRefGoogle Scholar
  6. Booth BC, Marchant HJ (1987) Parmales, a new order of marine Chrysophytes, with descriptions of three genera and seven species. J Phycol 23:245–260CrossRefGoogle Scholar
  7. Callaini G, Riparbelli MG, Dallai R (1999) Centrosome inheritance in insects: fertilization and parthenogenesis. Biol Cell 91:355–366PubMedGoogle Scholar
  8. Carvalho-Santos Z, Azimzadeh J, Pereira-Leal JB, Bettencourt-Dias M (2011) Tracing the origins of centrioles, cilia, and flagella. J Cell Biol 194:165–175PubMedCrossRefGoogle Scholar
  9. Chepurnov VA, Mann DG, von Dassow P, Armbrust EV, Sabbe K, Dasseville R, Vyverman W (2006) Oogamous reproduction, with two-step auxosporulation, in the centric diatom Thalassiosira punctigera (Bacillariophyta). J Phycol 42:845–858CrossRefGoogle Scholar
  10. DiPetrillo CG, Smith EF (2010) Pcdp1 is a central apparatus protein that binds Ca2+-calmodulin and regulates ciliary motility. J Cell Biol 189:601–612PubMedCrossRefGoogle Scholar
  11. Dodge JD (1971) The fine structure of algal cells. Academic, LondonGoogle Scholar
  12. Drebes G (1972) The life history of the centric diatom Bacteriastrum hyalinum Lauder. Nova Hedwigia, Beih 39:95–110Google Scholar
  13. Drebes G (1977) Cell structure, cell division, and sexual reproduction of Attheya decora West (Bacillariophyceae, Biddulphiineae). Nova Hedwigia, Beih 54:167–178Google Scholar
  14. Ettl H, Müller DG, Neumann K, von Stosch HA, Weber W (1967) Vegetative Fortpflanzung, Parthenogenese und Apogamie bei Algen. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie, vol 18. Springer, Berlin, pp 597–776Google Scholar
  15. Gibbons BH, Baccetti B, Gibbons IR (1985) Live and reactivated motility in the 9 + 0 flagellum of Anguilla sperm. Cell Motil 5:333–350PubMedCrossRefGoogle Scholar
  16. Graham LE, Wilcox LW (2000) Algae. Prentice, New JerseyGoogle Scholar
  17. Guillou L, Chrétiennot-Dinet M-J, Medlin LK, Claustre H, Loiseaux-de Goër S, Vaulot D (1999) Bolidomonas, a new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta). J Phycol 35:368–381CrossRefGoogle Scholar
  18. Hardham AR (1987) Microtubules and the flagellar apparatus in zoospores and cysts of the fungus Phytophthora cinnamomi. Protoplasma 137:109–124CrossRefGoogle Scholar
  19. Heath IB, Darley WM (1972) Observations on the ultrastructure of the male gametes of Biddulphia levis Ehr. J Phycol 8:51–59Google Scholar
  20. Hibberd DJ, Leedale GF (1970) Eustigmatophyceae—a new algal class with unique organization of the motile cell. Nature 225:758–760PubMedCrossRefGoogle Scholar
  21. Hibberd DJ, Norris RE (1984) Cytology and ultrastructure of Chlorarachnion reptans (Chlorarachniophyta divisio nova, Chlorarachniophyceae classis nova). J Phycol 20:310–330CrossRefGoogle Scholar
  22. Holwill MEJ, Peters PD (1974) Dynamics of the hispid flagellum of Ochromonas danica: the role of mastigonemes. J Cell Biol 62:322–328PubMedCrossRefGoogle Scholar
  23. Hori T (1993) An illustrated atlas of the life history of algae. Volume 3. Unicellular and flagellate algae. Uchida Rokakuho, Tokyo. [In Japanese]Google Scholar
  24. Ichinomiya M, Yoshikawa S, Kamiya M, Ohki K, Takaichi S, Kuwata A (2011) Isolation and characterization of Parmales (Heterokonta/ Heterokontophyta/ Stramenopiles) from the Oyashio region, western North Pacific. J Phycol 47:144–151CrossRefGoogle Scholar
  25. Idei M, Chihara M (1992) Successive observation on the fertilization of a centric diatom Melosira moniliformis var. octogona. Bot Mag Tokyo 105:649–658CrossRefGoogle Scholar
  26. Ishijima S, Sekiguchi K, Hiramoto Y (1988) Comparative study of the beat patterns of American and Asian horseshoe crab sperm: evidence for a role of the central pair complex in forming planar waveforms in flagella. Cell Motil Cytoskel 9:264–270CrossRefGoogle Scholar
  27. Jahn TL, Lawman MD, Fonseca JR (1964) The mechanism of locomotion of flagellates. II. Function of the mastigonemes of Ochromonas. J Protozool 11:291–296Google Scholar
  28. Jensen KG, Moestrup Ø, Schmid A-MM (2003) Ultrastructure of the male gametes from two centric diatoms, Chaetoceros laciniosus and Coscinodiscus wailesii (Bacillariophyceae). Phycologia 42:98–105CrossRefGoogle Scholar
  29. Kai A, Yoshii Y, Nakayama T, Inouye I (2008) Aurearenophyceae classis nova, a new class of Heterokontophyta based on a new marine unicellular alga Aurearena cruciata gen. et sp. nov. inhabiting sandy beaches. Protist 159:435–457PubMedCrossRefGoogle Scholar
  30. Kawai H, Maeba S, Sasaki H, Okuda K, Henry EC (2003) Schizocladia ischiensis: a new filamentous marine chromophyte belonging to a new class, Schizocladiophyceae. Protist 154:211–228PubMedCrossRefGoogle Scholar
  31. Kim E, Yubuki N, Leander BS, Graham LE (2010) Ultrastructure and 18S rDNA phylogeny of Apoikia lindahlii comb. nov. (Chrysophyceae) and its epibiontic protists, Filos agilis gen. et sp. nov. (Bicosoecida) and Nanos amicus gen. et sp. nov. (Bicosoecida). Protist 161:177–196PubMedCrossRefGoogle Scholar
  32. Kuroiwa T, Suzuki T (1980) An improved method for the demonstration of the in situ chloroplast nuclei in higher-plants. Cell Struct Funct 5:195–197CrossRefGoogle Scholar
  33. Leadbeater BSC (1989) The phylogenetic significance of flagellar hairs in the Chromophyta. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae: problems and perspectives (Systematics Association Special Volume 38). Clarendon, Oxford, pp 145–165Google Scholar
  34. Leedale GF, Leadbeater BSC, Massalski A (1970) The intracellular origin of flagellar hairs in the Chrysophyceae and Xanthophyceae. J Cell Sci 6:701–719PubMedGoogle Scholar
  35. Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, De Clerck O (2012) Phylogeny and molecular evolution of the green algae. Crit Rev Plant Sci 31:1–46CrossRefGoogle Scholar
  36. Lindemann CB, Lesich KA (2010) Flagellar and ciliary beating: the proven and the possible. J Cell Sci 123:519–528PubMedCrossRefGoogle Scholar
  37. Mann DG, Marchant H (1989) The origins of the diatom and its life cycle. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae: problems and perspectives (Systematics Association Special Volume 38). Clarendon, Oxford, pp 305–321Google Scholar
  38. Manton I, von Stosch HA (1966) Observations on the fine structure of the male gamete of the marine centric diatom Lithodesmium undulatum. J Roy Microsc Soc 85:119–134CrossRefGoogle Scholar
  39. Manton I, Kowallik K, von Stosch HA (1970) Observations on the fine structure and development of the spindle at mitosis and meiosis in a marine centric diatom (Lithodesmium undulatum) IV. The second meiotic division and conclusion. J Cell Biol 7:407–443Google Scholar
  40. Medlin LK, Kaczmarska I (2004) Evolution of the diatoms: V. Morphological and cytological support for the major clades and a taxonomic revision. Phycologia 43:245–270CrossRefGoogle Scholar
  41. Montsant A, Allen AE, Coesel S, De Martino A, Falciatore A, Mangogna M, Siaut M, Heijde M, Jabbari K, Maheswari U, Rayko E, Vardi A, Apt KE, Berges JA, Chiovitti A, Davis AK, Thamatrakoln K, Hadi MZ, Lane TW, Lippmeier JC, Martinez D, Parker MS, Pazour GJ, Saito MA, Rokhsar DS, Armbrust EV, Bowler C (2007) Identification and comparative genomic analysis of signaling and regulatory components in the diatom Thalassiosira pseudonana. J Phycol 43:585–604CrossRefGoogle Scholar
  42. Namdeo S, Khaderi SN, den Toonder JMJ, Onck PR (2011) Swimming direction reversal of flagella through ciliary motion of mastigonemes. Biomicrofluidics 5:034108CrossRefGoogle Scholar
  43. Okada Y, Takeda S, Tanaka Y, Belmonte J-CI, Hirokawa N (2005) Mechanism of nodal flow: a conserved symmetry breaking event in left–right axis determination. Cell 121:633–644PubMedCrossRefGoogle Scholar
  44. Omoto CK, Gibbons IR, Kamiya R, Shingyoji C, Takahashi K, Witman GB (1999) Rotation of the central pair microtubules in eukaryotic flagella. Mol Biol Cell 10:1–4PubMedCrossRefGoogle Scholar
  45. Patil V, Bråte J, Shalchian-Tabrizi K, Jakobsen KS (2009) Revisiting the phylogenetic position of Synchroma grande. J Euk Microbiol 56:394–396PubMedCrossRefGoogle Scholar
  46. Pickett-Heaps JD, Schmid A-MM, Edgar LA (1990) The cell biology of diatom valve formation. Progr Phycol Res 7:1–168Google Scholar
  47. Raven JA, Richardson K (1984) Dinophyte flagella: a cost–benefit analysis. New Phytol 98:259–276CrossRefGoogle Scholar
  48. Riparbelli MG, Callaini G, Mercati D, Hertel H, Dallai R (2009) Centrioles to basal bodies in the spermiogenesis of Mastotermes darwiniensis (Insecta, Isoptera). Cell Motil Cytoskel 66:248–259CrossRefGoogle Scholar
  49. Round FE, Crawford RM, Mann DG (1990) The diatoms. Biology and morphology of the genera. Cambridge University Press, CambridgeGoogle Scholar
  50. Schultz ME, Trainor FR (1968) Production of male gametes and auxospores in the centric diatoms Cyclotella meneghiniana and C. cryptica. J Phycol 4:85–88CrossRefGoogle Scholar
  51. Sims PA, Mann DG, Medlin LK (2006) Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia 45:361–402CrossRefGoogle Scholar
  52. Smith EF, Yang P (2004) The radial spokes and central apparatus: mechano-chemical transducers that regulate flagellar motility. Cell Motil Cytoskel 57:8–17CrossRefGoogle Scholar
  53. Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastr Res 26:31–43Google Scholar
  54. Stosch HA von (1954) Die Oogamie von Biddulphia mobiliensis und die bisher bekannten Auxosporenbildung bei den Centrales. Rapports et Communications, Huitième Congrès International de Botanique, Paris 1954, section 17. P. André, Paris, pp 58–68Google Scholar
  55. von Stosch HA (1956) Entwicklungsgeschichtliche Untersuchungen an zentrischen Diatomeen. II. Geschlechtszellenreifung, Befruchtung und Auxosporenbldung einiger grundbewohender Bidduphiaceen der Nordsee. Arch Mikrobiol 23:327–365CrossRefGoogle Scholar
  56. von Stosch HA (1958) Entwicklungsgeschichtliche Untersuchungen an zentrischen Diatomeen. III. Die Spermatogenese von Melosira moniliformis Agardh. Arch Mikrobiol 31:274–282CrossRefGoogle Scholar
  57. von Stosch HA (1982) On auxospore envelopes in diatoms. Bacillaria 5:127–156Google Scholar
  58. von Stosch HA, Drebes G (1964) Entwicklungsgeschichtliche Untersuchungen an zentrischen Diatomeen IV. Die Planktondiatomee Stephanopyxis turris—ihre Behandlung und Entwicklungsgeschichte. Helgol wiss Meeresunters 11:209–257CrossRefGoogle Scholar
  59. von Stosch HA, Theil G, Kowallik K (1973) Entwicklungsgeschichtliche Untersuchungen an zentrischen Diatomeen V. Bau und Lebenszyklus von Chaetoceros didymum, mit Beobachtungen über einige anderen Arten der Gattung. Helgol wiss Meeresunters 25:384–445CrossRefGoogle Scholar
  60. Takeda S, Narita K (2012) Structure and function of vertebrate cilia, towards a new taxonomy. Differentiation 83:S4–S11PubMedCrossRefGoogle Scholar
  61. Theriot EC, Cannone JJ, Gutell RR, Alverson AJ (2009) The limits of nuclear-encoded SSU rDNA for resolving the diatom phylogeny. Eur J Phycol 44:277–290PubMedCrossRefGoogle Scholar
  62. Theriot EC, Ashworth M, Ruck E, Nakov T, Jansen RK (2010) A preliminary multigene phylogeny of the diatoms (Bacillariophyta): challenges for future research. Plant Ecol Evol 143:278–296CrossRefGoogle Scholar
  63. Theriot EC, Ruck E, Ashworth M, Nakov T, Jansen RK (2011) Status of the pursuit of the diatom phylogeny: are traditional views and new molecular paradigms really that different? In Seckbach J, Kociolek JP (eds) The diatom world. Cellular origin, life in extreme habitats and astrobiology, vol. 19. Springer, Dordrecht, pp 123–142Google Scholar
  64. van den Hoek C, Mann DG, Jahns HM (1995) Algae. An introduction to phycology. Cambridge University Press, CambridgeGoogle Scholar
  65. Witman GB, Plummer J, Sander G (1978) Chlamydomonas flagellar mutants lacking radial spokes and central tubules. Structure, composition, and function of specific axonemal components. J Cell Biol 76:729–747PubMedCrossRefGoogle Scholar
  66. Woodland HR, Fry AM (2008) Pix proteins and the evolution of centrioles. PLoS ONE 3(11):e3778PubMedCrossRefGoogle Scholar
  67. Woolley DM (1998) Studies on the eel sperm flagellum. 2. The kinematics of normal motility. Cell Motil Cytoskel 39:233–245CrossRefGoogle Scholar
  68. Woolley DM (2010) Flagellar oscillation: a commentary on proposed mechanisms. Biol Rev 85:453–470PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • Masahiko Idei
    • 1
  • Keigo Osada
    • 2
  • Shinya Sato
    • 3
  • Takeshi Nakayama
    • 5
  • Tamotsu Nagumo
    • 4
  • David G. Mann
    • 3
  1. 1.Bunkyo UniversityKoshigaya, SaitamaJapan
  2. 2.Department of BiologyThe Nippon Dental University, School of Life Dentistry at NiigataNiigataJapan
  3. 3.Royal Botanic Garden EdinburghEdinburghUK
  4. 4.Department of BiologyThe Nippon Dental UniversityTokyoJapan
  5. 5.Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan

Personalised recommendations