Advertisement

Protoplasma

, Volume 249, Issue 4, pp 1163–1172 | Cite as

Eduard Strasburger (1844–1912): founder of modern plant cell biology

  • Dieter Volkmann
  • František Baluška
  • Diedrik Menzel
Review Article

Abstract

Eduard Strasburger, director of the Botany Institute and the Botanical Garden at the University of Bonn from 1881 to 1912, was one of the most admirable scientists in the field of plant biology, not just as the founder of modern plant cell biology but in addition as an excellent teacher who strongly believed in “education through science.” He contributed to plant cell biology by discovering the discrete stages of karyokinesis and cytokinesis in algae and higher plants, describing cytoplasmic streaming in different systems, and reporting on the growth of the pollen tube into the embryo sac and guidance of the tube by synergides. Strasburger raised many problems which are hot spots in recent plant cell biology, e.g., structure and function of the plasmodesmata in relation to phloem loading (Strasburger cells) and signaling, mechanisms of cell plate formation, vesicle trafficking as a basis for most important developmental processes, and signaling related to fertilization.

Keywords

Eduard Strasburger Cell polarity Cytokinesis Cytoplasmic streaming Fertilization Karyokinesis Plant cell biology Strasburger cells 

Notes

Acknowledgment

This paper was presented as an invited lecture at the 5th Conference of the Polish Society of Experimental Plant Biology. It served as introduction to the session “E. Strasburger Day—Cellular Level” which was organized by Profs. Beata Zagórska-Marek (Wrocław University, Poland) and Przemysław Wojtaszek (Adam Mickiewicz University, Poznań, Poland).

Conflict of interest

There is no conflict of interest.

References

  1. Ackers D, Hejnowicz Z, Sievers A (1994) Variation in velocity of cytoplasmic streaming and gravity effect in Characean internodal cells measured by laser-Doppler-velocimetry. Protoplasma 179:61–71PubMedCrossRefGoogle Scholar
  2. Alt W (1987) Mathematical models in actin–myosin interaction. In: Wohlfarth-Bottermann KE (ed) Nature and function of cytoskeletal proteins in motility and transport. Fortschritte der Zoologie 34, pp 219–230Google Scholar
  3. Baker K, Hepler PK, Jackson WT (1968) Microtubules and early stages of cell-plate formation in the endosperm of Haemanthus. J Cell Biol 38:437–446CrossRefGoogle Scholar
  4. Baluška F, Salaj J, Mathur J, Braun M, Jasper F, Šamaj J, Chua N-H, Barlow PW, Volkmann D (2000) Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Dev Biol 227:618–632Google Scholar
  5. Baluška F, Volkmann D, Menzel D, Barlow P (2012) Strasburger’s legacy to mitosis and cytokinesis and its relevance for the cell theory. Protoplasma. doi: 10.1007/s00709-012-0404-8
  6. Bannigan A, Lizotte-Waniewski M, Riley M, Baskin TI (2008) Emerging molecular mechanisms that power and regulate the anastral mitotic spindle of flowering plants. Cell Motil Cytoskeleton 65:1–11PubMedCrossRefGoogle Scholar
  7. Baskin TI, Cande WZ (1990) The structure and function of the mitotic spindle in flowering plants. Annu Rev Plant Biol 41:277–315CrossRefGoogle Scholar
  8. Bresinsky A, Körner Ch, Kadereit JW, Neuhaus G, Sonnewald U (2008) Strasburger—Lehrbuch der Botanik. Begründet von E. Strasburger, Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  9. Brown RC, Lemmon BE, Nguyen H (2003) Events during the first four rounds of mitosis establish three developmental domains in the syncytial endosperm of Arabidopsis thaliana. Protoplasma 222:167–174PubMedCrossRefGoogle Scholar
  10. Chamberlain ChJ (1912) Eduard Strasburger. Bot Gaz 54:68–72CrossRefGoogle Scholar
  11. Dhonukshe P, Baluška F, Schlicht M, Šamaj J, Friml J, Gadella TWJ Jr (2006) Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis. Dev Cell 10:137–150PubMedCrossRefGoogle Scholar
  12. Dhonukshe P, Šamaj J, Baluška F, Friml J (2007) A unifying new model of cytokinesis for the dividing plant and animal cells. BioEssays 29:371–381PubMedCrossRefGoogle Scholar
  13. Emons AMC, Ketelaar T (2009) Intracellular organization: a prerequisite for root hair elongation and cell wall deposition. Plant Cell Monogr 12:27–44CrossRefGoogle Scholar
  14. Fitting H (1937) Beitrage zur Physiologie der Protoplasmaströmung in den Blättern von Vallisneria spiralis. Ber deutsch Bot Ges 55:255–261Google Scholar
  15. Grolig F, Pierson ES (2000) Cytoplasmic streaming: from flow to track. In: Staiger CJ, Baluška F, Volkmann D, Barlow PW (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer, Dordrecht, pp 165–190Google Scholar
  16. Hepler PK, Vidali L, Cheung AY (2001) Polarized cell growth in higher plants. Annu Rev Cell Dev Biol 17:159–187PubMedCrossRefGoogle Scholar
  17. Holweg C, Nick P (2004) Arabidopsis myosin XI mutant is defective in organelle movement and polar auxin transport. PNAS 101:10488–10493Google Scholar
  18. Jarosch R (1960) Die dynamik im Characeen protoplasma. Phyton 15:43–66Google Scholar
  19. Kamiya N (1962) Protoplasmic streaming. Encyclop Plant Physiol 17–2:981–1035Google Scholar
  20. King SM (2002) Dyneins motor on in plants. Traffic 3:930–931PubMedCrossRefGoogle Scholar
  21. Knoop V, Müller K (2009) Gene und Stammbäume. Ein Handbuch zur molekularen Phylogenetik. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  22. Kollmann R, Schumacher W (1964) Über die Feinstruktur des Phloems von Metasequoia glyptostroboides und seine jahreszeitlichen Veränderungen. V. Die Differenzierung der Siebzellen im Verlauf einer Vegetationsperiode. Planta 63:155–190CrossRefGoogle Scholar
  23. Lawrence CJ, Morris NR, MeagherRB DRK (2001) Dyneins have run their course in plant lineage. Traffic 2:362–363PubMedCrossRefGoogle Scholar
  24. Liebe S, Menzel D (1995) Actomyosin-based motility of endoplasmic reticulum and chloroplasts in Vallisneria mesophyll cells. Biol Cell 85:207–222PubMedCrossRefGoogle Scholar
  25. Liesche J, Martens HJ, Schulz A (2011) Symplasmic transport and phloem loading in gymnosperm leaves. Protoplasma 248:181–190PubMedCrossRefGoogle Scholar
  26. Lord EM (2005) Adhesion and guidance in compatible pollination. J Exp Bot 54:47–54CrossRefGoogle Scholar
  27. Lord EM, Russell SD (2002) The mechanisms of pollination and fertilization in plants. Annu Rev Cell Dev Biol 18:81–105PubMedCrossRefGoogle Scholar
  28. Lucas WJ, Ham B-K, Kim J-Y (2009) Plasmodesmata—bridging the gap between neighboring plant cells. Trends Cell Biol 19:495–500PubMedCrossRefGoogle Scholar
  29. Meagher RB, McKinney EC, Kandasamy MK (2000) The significance of diversity in the plant actin gene family. Studies in Arabidopsis. In: Staiger CJ, Baluška F, Volkmann D, Barlow PW (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer, Dordrecht, pp 3–27Google Scholar
  30. Mine I, Menzel D, Okuda K (2008) Morphogenesis in giant-celled algae. Int Rev Cell Mol Biol 266:37–83PubMedCrossRefGoogle Scholar
  31. Nowack MK, Grini PE, Jakoby MJ, Lafos M, Koncz C, Schnittger A (2006) A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis. Nat Genet 38:63–67PubMedCrossRefGoogle Scholar
  32. Okuda S, Tsutsui H, Shiin K, Sprunck S, Takeuchi K, Yui R et al (2009) Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357–361PubMedCrossRefGoogle Scholar
  33. Otegui MS, Mastronarde DN, Kang BH, Bednarek SY, Staehelin LA (2001) Three-dimensional analysis of syncytial-type cell plates during endosperm cellularization visualized by high resolution electron tomography. Plant Cell 13:2033–2051PubMedGoogle Scholar
  34. Pickett-Heaps JD, Northcote DH (1966) Organization of microtubules and endoplasmic reticulum during mitosis and cytokinesis in wheat meristem. J Cell Sci 1:109–120PubMedGoogle Scholar
  35. Pickett-Heaps JD, Gunning BE, Brown RC, Lemmon BE, Cleary AL (1999) The cytoplast concept in dividing plant cells: cytoplasmic domains and the evolution of spatially organized cell. Am J Bot 86:153–172PubMedCrossRefGoogle Scholar
  36. Pollack GH (2001) Cells, gels and the engines of life. A new unifying approach to cell function. Ebner and Sons, SeattleGoogle Scholar
  37. Rasmussen CG, Humphries JA, Smith LG (2011) Determination of symmetric and asymmetric division planes in plant cells. Annu Rev Plant Biol 62:387–409PubMedCrossRefGoogle Scholar
  38. Reichardt I, Stierhof Y-D, Mayer U, Richter S, Schwarz H, Schumacher K, Jürgens G (2007) Plant cytokinesis requires de novo secretory trafficking but not endocytosis. Current Biol 17:2047–2053CrossRefGoogle Scholar
  39. Reichelt S, Kendrick-Jones J (2000) Myosins. In: Staiger CJ, Baluška F, Volkmann D, Barlow PW (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer, Dordrecht, pp 29–44Google Scholar
  40. Ryu JH, Takagi S, Nagai R (1995) Stationary organization of the actin cytoskeleton in Vallisneria: the role of stable microfilaments at the end walls. J Cell Sci 108:1531–1539PubMedGoogle Scholar
  41. Šamaj J, Read ND, Volkmann D, Menzel D, Baluška F (2005) The endocytic network in plants. Trends Cell Biol 15:425–433PubMedCrossRefGoogle Scholar
  42. Šamaj J, Müller J, Beck M, Böhm N, Menzel D (2006) Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant Sci 11:594–600PubMedCrossRefGoogle Scholar
  43. Sauter JJ, Dörr I, Kollmann R (1976) The ultrastructure of Strasburger cells (= albuminous cells) in the secondary phloem of Pinus nigra var. austriaca (Hoess) Badoux. Protoplasma 88:31–49CrossRefGoogle Scholar
  44. Sawitzky H, Grolig F (1995) Phragmoplast of the green alga Spirogyra is functionally distinct from the higher plant phragmoplast. J Cell Biol 130:1359–1371PubMedCrossRefGoogle Scholar
  45. Schlicht M, Šamajová O, Schachtschnabel D, Mancuso S, Menzel D, Boland W, Baluška F (2008) Dorenone blocks polarized tip-growth of root hairs by interfering with the PIN2-mediated auxin transport network in the root apex. Plant J 55:709–717PubMedCrossRefGoogle Scholar
  46. Schreiber L (2010) Transport barriers made of cutin, suberin and associated waxes. Trends Plant Sci 15:546–553Google Scholar
  47. Shimmen T, Yokota E (2004) Cytoplasmic streaming in plants. Curr Opin Cell Biol 16:68–72PubMedCrossRefGoogle Scholar
  48. Sievers A, Buchen B, Volkmann D, Hejnowicz Z (1991) Role of the cytoskeleton in gravity perception. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic, London, pp 169–182Google Scholar
  49. Sparks I (2011) Recent advances in understanding plant myosin function: life in the fast lane. Mol Plant 4:805–812CrossRefGoogle Scholar
  50. Strasburger E (1875) Über Zellbildung und Zelltheilung. Hermann Dabis, JenaGoogle Scholar
  51. Strasburger E (1876) Über Zellbildung und Zelltheilung, zweite verbesserte und vermehrte Auflage nebst Untersuchungen über Befruchtung. Hermann Dabis, JenaGoogle Scholar
  52. Strasburger E (1882) Über den Theilungsvorgang der Zellkerne und das Verhältniss der Kerntheilung zur Zelltheilung. Max Cohen & Sohn, BonnGoogle Scholar
  53. Strasburger E (1884a) Das Botanische Practicum. Anleitung zum Selbststudium der mikroskopischen Botanik für Anfänger und Fortgeschrittnere. Gustav Fischer, JenaGoogle Scholar
  54. Strasburger E (1884b) Neue Untersuchungen über den Befruchtungsvorgang bei den Phanerogamen als Grundlage für eine Theorie der Zeugung. Gustav Fischer, JenaGoogle Scholar
  55. Strasburger E (1891) Ueber den Bau und die Verrichtung der Leitungsbahnen in den Pflanzen. Gustav Fischer, JenaGoogle Scholar
  56. Strasburger E (1904) Streifzüge an der Riviera, zweite gänzlich umgearbeitete Auflage mit 87 farbigen Abbildungen. Gustav Fischer, JenaGoogle Scholar
  57. Strasburger E (1913) Pflanzliche Zellen-und Gewebelehre. In: Von Wettstein R (ed) Zellen-und Gewebelehre, Morphologie und Entwicklunggeschichte. B.G. Teubner, Leipzig, pp 1–174Google Scholar
  58. Strasburger E, Noll F, Schenck H, Schimper AFW (1894) Lehrbuch der Botanik für Hochschulen. Gustav Fischer, JenaGoogle Scholar
  59. Takagi S, Nagai R (1983) Regulation of cytoplasmic streaming in Vallisneria mesophyll cells. J Cell Sci 62:385–405PubMedGoogle Scholar
  60. Thomas SG, Franklin-Tong VE (2004) Self-incompatibility triggers programmed cell death in Papaver pollen. Nature 429:305–309PubMedCrossRefGoogle Scholar
  61. Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112:467–480PubMedCrossRefGoogle Scholar
  62. Van Bel AJE (1993) Strategies of phloem loading. Annu Rev Plant Physiol Plant Mol Biol 44:253–281CrossRefGoogle Scholar
  63. Verchot-Lubicz J, Goldstein RE (2010) Cytoplasmic streaming enables the distribution of molecules and vesicles in large plant cells. Protoplasma 240:99–107PubMedCrossRefGoogle Scholar
  64. Voigt B, Timmers AC, Šamaj J, Hlavacka A, Ueda T, Preuss M, Nielsen E, Mathur J, Emans N, Stenmark H, Nakano A, Baluška F, Menzel D (2005) Actin-based motility of endosomes is linked to the polar tip growth of root hairs. Eur J Cell Biol 84:609–621PubMedCrossRefGoogle Scholar
  65. Volkmann D, Baluška F (1999) Actin cytoskeleton in plants: from transport networks to signaling networks. Microsc Res Tech 47:135–154PubMedCrossRefGoogle Scholar
  66. Weiler E, Nover L (2008) Allgemeine und molekulare Botanik. Begründet von Wilhelm Nultsch. Georg Thieme, StuttgartGoogle Scholar
  67. Whaley WG, Mollenhauer HH (1963) The Golgi apparatus and cell plate formation—a postulate. J Cell Biol 17:216PubMedCrossRefGoogle Scholar
  68. Wickstead B, Gull K (2007) Dyneins across eukaryotes: a comparative genomic analysis. Traffic 7:1708–1721CrossRefGoogle Scholar
  69. Zonia L (2010) Spatial and temporal integration of signalling networks regulating pollen tube growth. J Exp Bot 61:1939–1957PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Dieter Volkmann
    • 1
  • František Baluška
    • 1
  • Diedrik Menzel
    • 1
  1. 1.Institute of Cellular and Molecular Botany (IZMB)University of BonnBonnGermany

Personalised recommendations