, Volume 250, Issue 1, pp 197–207 | Cite as

In silico analysis of drug-resistant mutant of neuraminidase (N294S) against oseltamivir

  • V. Karthick
  • V. Shanthi
  • R. Rajasekaran
  • K. Ramanathan
Original Article


The recent H1N1 influenza pandemic has attracted worldwide attention due to the high infection rate. Oseltamivir is a new class of anti-viral agent approved for the treatment and prevention of influenza infections. The principal target for this drug is a virus surface glycoprotein, neuraminidase (NA), which facilitates the release of nascent virus and thus spreads infection. Until recently, only a low prevalence of neuraminidase inhibitor (NAI) resistance (<1 %) had been detected in circulating viruses. However, there have been reports of significant numbers of A (H1N1) influenza strains with a N294S neuraminidase mutation that was highly resistant to the NAI, oseltamivir. Hence, in the present study, we highlight the effect of point mutation-induced oseltamivir resistance in H1N1 subtype neuraminidases by molecular simulation approach. The docking analysis reveals that mutation (N294S) significantly affects the binding affinity of oseltamivir with mutant type NA. This is mainly due to the decrease in the flexibility of binding site residues and the difference in prevalence of hydrogen bonds in the wild and mutant structures. This study throws light on the possible effects of drug-resistant mutations on the large functionally important collective motions in biological systems.


Neuraminidase Oseltamivir resistance Molecular docking Normal mode analysis Molecular dynamic simulation 



The authors express deep sense of gratitude to the management of Vellore Institute of Technology for all the support, assistance, and constant encouragement to carry out this work. The authors also thank Professor M.A. Mohamed Sahul Hameed, English Division, for grammar corrections in our manuscript. The authors also thank reviewers for their valuable comments and suggestion in the improvement of our manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alexandrov V, Lehnert U, Echols N, Milburn D, Engelman D, Gerstein M (2005) Normal modes for predicting protein motions: a comprehensive database assessment and associated Web tool. Protein Sci 14(3):633–643PubMedCrossRefGoogle Scholar
  2. Alves ID, Bechara C, Walrant A, Zaltsman Y, Jiao CY, Sagan S (2011) Relationships between membrane binding, affinity and cell internalization efficacy of a cell-penetrating peptide: penetratin as a case study. PLoS One 6(9):e24096PubMedCrossRefGoogle Scholar
  3. Baum SG (2009) Oseltamivir resistance: what does it mean clinically? Clin Infect Dis 49(12):1836–1837PubMedCrossRefGoogle Scholar
  4. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242PubMedCrossRefGoogle Scholar
  5. Bucher DJ, Kilbourne ED (1972) A 2 (N2) neuraminidase of the X-7 influenza virus recombinant: determination of molecular size and subunit composition of the active unit. J Virol 10(1):60–66PubMedGoogle Scholar
  6. Carlson HA, McCammon JA (2000) Accommodating protein flexibility in computational drug design. Mol Pharmacol 57(2):213–218PubMedGoogle Scholar
  7. Cavasotto CN, Kovacs JA, Abagyan RA (2005) Representing receptor flexibility in ligand docking through relevant normal modes. J Am Chem Soc 127(26):9632–9640PubMedCrossRefGoogle Scholar
  8. Choudhury D, Biswas S, Roy S, Dattagupta JK (2010) Improving thermostability of papain through structure-based protein engineering. Protein Eng Des Sel 23(6):457–467PubMedCrossRefGoogle Scholar
  9. Collins PJ, Haire LF, Lin YP, Liu J, Russell RJ, Walker PA, Skehel JJ, Martin SR, Hay AJ, Gamblin SJ (2008) Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature 453(7199):1258–1261PubMedCrossRefGoogle Scholar
  10. Colman PM, Varghese JN, Laver WG (1983) Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature 303(5912):41–44PubMedCrossRefGoogle Scholar
  11. Darden T, Perera L, Li L, Pedersen L (1999) New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure 7(3):55–60CrossRefGoogle Scholar
  12. Delarue M, Dumas P (2004) On the use of low-frequency normal modes to enforce collective movements in refining macromolecular structural models. Proc Natl Acad Sci U S A 101(18):6957–62PubMedCrossRefGoogle Scholar
  13. Du QS, Wang SQ, Chou KC (2007) Study of drug resistance of chicken influenza A virus (H5N1) from homology-modeled 3D structures of neuraminidases. Biochem Biophys Res Commun 354(3):634–640PubMedCrossRefGoogle Scholar
  14. Feldman J, Snyder KA, Ticoll A, Pintilie G, Hogue CW (2006) A complete small molecule dataset from the protein data bank. FEBS Lett 580(6):1649–1653PubMedCrossRefGoogle Scholar
  15. Gasteiger J, Rudolph C, Sadowski J (1990) Automatic generation of 3D-atomic coordinates for organic molecules. Tetrahedron Comput Meth 3:537–547CrossRefGoogle Scholar
  16. Gubareva LV, Kaiser L, Hayden FG (2000) Influenza virus neuraminidase inhibitors. Lancet 355(9206):827–835PubMedCrossRefGoogle Scholar
  17. Hess B, Kutzner C, Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447CrossRefGoogle Scholar
  18. Hinkle A, Tobacman LS (2003) Folding and function of the troponin tail domain. Effects of cardiomyopathic troponin T mutations. J Biol Chem 278(1):506–513PubMedCrossRefGoogle Scholar
  19. Hsieh YC, Wu TZ, Liu DP, Shao PL, Chang LY, Lu CY, Lee CY, Huang FY, Huang LM (2006) Influenza pandemics: past, present and future. J F Med Assoc 105(1):1–6CrossRefGoogle Scholar
  20. Kim CU, Lew W, Williams MA, Liu H, Zhang L, Swaminathan S, Bischofberger N, Chen MS, Mendel DB, Tai CY (1997) Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J Am Chem Soc 119(4):681–690PubMedCrossRefGoogle Scholar
  21. Lander GC, Evilevitch A, Jeembaeva M, Potter CS, Carragher B, Johnson J (2008) Bacteriophage lambda stabilization by auxiliary protein gpD: timing, location, and mechanism of attachment determined by cryo-EM. Structure 16(9):1399–406PubMedCrossRefGoogle Scholar
  22. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Mod 7(8):306–317Google Scholar
  23. Lopez G, Valencia A, Tress ML (2007) firestar—prediction of functionally important residues using structural templates and alignment reliability. Nucleic Acids Res 35:573–577CrossRefGoogle Scholar
  24. Matrosovich MN, Matrosovich TY, Gray T, Roberts NA, Klenk H (2004) Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J Virol 78(22):12665–12667PubMedCrossRefGoogle Scholar
  25. McKimm-Breschkin JL (2000) Resistance of influenza viruses to neuraminidase inhibitors—a review. Antiviral Res 47(1):1–17PubMedCrossRefGoogle Scholar
  26. Meagher KL, Carlson HA (2005) Solvation influences flap collapse in HIV-1 protease. Proteins: Struct Func Bioinf 58(1):119–125CrossRefGoogle Scholar
  27. Moscona A (2005) Oseltamivir resistance—disabling our influenza defenses. N Engl J Med 353(25):2633–2636PubMedCrossRefGoogle Scholar
  28. Mukhtar MM, Rasool ST, Song D, Zhu C, Hao Q, Zhu Y, Wu J (2007) Origin of highly pathogenic H5N1 avian influenza virus in China and genetic characterization of donor and recipient viruses. J Gen Virol 88(11):3094–3099PubMedCrossRefGoogle Scholar
  29. Pales PS (2004) Influenza: old and new threats. Nat Med 10:82–87CrossRefGoogle Scholar
  30. Parthasarathy S, Murthy MR (2000) Protein thermal stability: insights from atomic displacement parameters (B values). Protein Eng 13(1):9–13PubMedCrossRefGoogle Scholar
  31. Rajasekaran R, George Priya Doss C, Sudandiradoss C, Ramanathan K, Purohit R, Sethumadhavan R (2008) Effect of deleterious nsSNP on the HER2 receptor based on stability and binding affinity with herceptin: a computational approach. C R Biol 331(6):409–417PubMedCrossRefGoogle Scholar
  32. Ringe D, Petsko GA (1986) Study of protein dynamics by X-ray diffraction. Methods Enzymol 131:389–433PubMedCrossRefGoogle Scholar
  33. Rungrotmongkol T, Udommaneethanakit T, Malaisree M, Nunthaboot N, Intharathep P, Sompornpisut P, Hannongbua S (2009) How does each substituent functional group of oseltamivir lose its activity against virulent H5N1 influenza mutants? Biophys Chem 145(1):29–36PubMedCrossRefGoogle Scholar
  34. Russell RJ, Haire LF, Stevens DJ, Collins PJ, Lin YP, Blackburn GM, Hay AJ, Gamblin SJ, Skehel JJ (2006) The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443(7107):45–49PubMedCrossRefGoogle Scholar
  35. Shirvan AN, Moradi M, Aminian M, Madani R (2007) Preparation of neuraminidase-specific antiserum from the H9N2 subtype of avian influenza virus Turk. J Vet Anim 31(4):219–223Google Scholar
  36. Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. Comput Chem 26(16):1701–1718CrossRefGoogle Scholar
  37. Su Y, Yang HY, Zhang BJ, Jia HL, Tien P (2008) Analysis of a point mutation in H5N1 avian influenza virus hemagglutinin in relation to virus entry into live mammalian cells. Arch Virol 153(12):2253–2261PubMedCrossRefGoogle Scholar
  38. Suhre K, Sanejouand YH (2004) ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids 32:610–614CrossRefGoogle Scholar
  39. Takeda M, Leser GP, Russell CJ, Lamb RA (2003) Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion. Proc Natl Acad Sci 100(25):14610–14617PubMedCrossRefGoogle Scholar
  40. Teague SJ (2003) Implications of protein flexibility for drug discovery. Nat Rev Drug Discov 2(7):527–541PubMedCrossRefGoogle Scholar
  41. Thompson MA (2004) ArgusLab 4.0.1. Planaria Software, Seattle.
  42. Thompson MA (2004b) Poster presentation: molecular docking using arguslab: An efficient shape-based search algorithm and the AScore scoring function. Fall ACS meeting, PhiladelphiaGoogle Scholar
  43. Varghese JN, Smith PW, Sollis SL, Blick SJ, Sahasrabudhe A, Mckimm-Breschkin JL, Colman PM (1998) Drug design against a shifting target: a structural basis for resistance to inhibitors in a variant of influenza virus neuraminidase. Structure 6(6):735–746PubMedCrossRefGoogle Scholar
  44. Von Itzstein M, Wu WY, Kok BG, Pegg MS, Dyason JC, Jin B, Van Phan T, Smythe ML, White HF, Oliver SW (1993) Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363(6428):418–423CrossRefGoogle Scholar
  45. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein–ligand interactions. Protein Eng 8(2):127–134PubMedCrossRefGoogle Scholar
  46. Yuan Z, Bailey TL, Teasdale RD (2005) Prediction of protein B-factor profiles. Proteins 58(4):905–912PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • V. Karthick
    • 1
  • V. Shanthi
    • 2
  • R. Rajasekaran
    • 1
  • K. Ramanathan
    • 1
  1. 1.Bioinformatics Division, School of Bio Sciences and TechnologyVellore Institute of TechnologyVelloreIndia
  2. 2.Industrial Biotechnology Division, School of Bio Sciences and TechnologyVellore Institute of TechnologyVelloreIndia

Personalised recommendations