, Volume 249, Issue 4, pp 957–966 | Cite as

The role of calcium in chloroplasts—an intriguing and unresolved puzzle

  • Agostinho G. Rocha
  • Ute C. VothknechtEmail author
Review Article


More than 70 years of studies have indicated that chloroplasts contain a significant amount of calcium, are a potential storage compartment for this ion, and might themselves be prone to calcium regulation. Many of these studies have been performed on the photosynthetic light reaction as well as CO2 fixation via the Calvin–Benson–Bassham cycle, and they showed that calcium is required in several steps of these processes. Further studies have indicated that calcium is involved in other chloroplast functions that are not directly related to photosynthesis and that there is a calcium-dependent regulation similar to cytoplasmic calcium signal transduction. Nevertheless, the precise role that calcium has as a functional and regulatory component of chloroplast processes remains enigmatic. Calcium concentrations in different chloroplast subcompartments have been measured, but the extent and direction of intra-plastidal calcium fluxes or calcium transport into and from the cytosol are not yet very well understood. In this review we want to give an overview over the current knowledge on the relationship between chloroplasts and calcium and discuss questions that need to be addressed in future research.


Calcium Signaling Chloroplasts Photosynthesis Calvin–Benson cycle Calmodulin 





Calvin–Benson–Bassham cycle


Calcium-sensing protein


(p)ppGpp synthases–degradases






Genetically encoded calcium indicator


NAD kinase


Guanosine 5′-triphosphate (or 5′-diphosphate) 3′-diphosphate


Photosystem I/II


Component of PSI/II




Translocon on the inner envelope of chloroplast



This work has been funded by the EU within the Marie-Curie ITN COSI (ITN 2008 GA 215-174) and by the Deutsche Forschungsgemeinschaft via ERA-NETs “Plant Genomics” (ERAPG 08-044).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Anderson JM, Charbonneau H, Jones HP, McCann RO, Cormier MJ (1980) Characterization of the plant nicotinamide adenine dinucleotide kinase activator protein and its identification as calmodulin. Biochemistry 19(13):3113–3120PubMedCrossRefGoogle Scholar
  2. Aro E-M, Suorsa M, Rokka A, Allahverdiyeva Y, Paakkarinen V, Saleem A, Battchikova N, Rintamäki E (2005) Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. J Exp Bot 56(411):347–356. doi: 10.1093/jxb/eri041 PubMedCrossRefGoogle Scholar
  3. Balsera M, Goetze TA, Kovacs-Bogdan E, Schurmann P, Wagner R, Buchanan BB, Soll J, Bolter B (2009) Characterization of Tic110, a channel-forming protein at the inner envelope membrane of chloroplasts, unveils a response to Ca(2+) and a stromal regulatory disulfide bridge. J Biol Chem 284(5):2603–2616. doi: 10.1074/jbc.M807134200 PubMedCrossRefGoogle Scholar
  4. Bayer RG, Stael S, Csaszar E, Teige M (2011a) Mining the soluble chloroplast proteome by affinity chromatography. Proteomics 11(7):1287–1299. doi: 10.1002/pmic.201000495 PubMedCrossRefGoogle Scholar
  5. Bayer RG, Stael S, Rocha A, Mair A, Vothknecht UC, Teige M (2011b) Chloroplast localised protein kinases—a step forward towards a complete inventory. J Exp Bot. doi: 10.1093/jxb/err377
  6. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1(1):11–21. doi: 10.1038/35036035 PubMedCrossRefGoogle Scholar
  7. Bertsch U, Soll J (1995) Functional analysis of isolated cpn10 domains and conserved amino acid residues in spinach chloroplast co-chaperonin by site-directed mutagenesis. Plant Mol Biol 29(5):1039–1055PubMedCrossRefGoogle Scholar
  8. Brand JJ, Becker DW (1984) Evidence for direct roles of calcium in photosynthesis. J Bioenerg Biomembr 16(4):239–249PubMedCrossRefGoogle Scholar
  9. Buaboocha T, Liao B, Zielinski RE (2001) Isolation of cDNA and genomic DNA clones encoding a calmodulin-binding protein related to a family of ATPases involved in cell division and vesicle fusion. Planta 212(5–6):774–781PubMedCrossRefGoogle Scholar
  10. Bussemer J, Chigri F, Vothknecht UC (2009a) Arabidopsis ATPase family gene 1-like protein 1 is a calmodulin-binding AAA+-ATPase with a dual localization in chloroplasts and mitochondria. FEBS J 276(14):3870–3880. doi: 10.1111/j.1742-4658.2009.07102.x PubMedCrossRefGoogle Scholar
  11. Bussemer J, Vothknecht UC, Chigri F (2009b) Calcium regulation in endosymbiotic organelles of plants. Plant Signal Behav 4(9):805–808PubMedCrossRefGoogle Scholar
  12. Cadet F, Meunier JC (1988) Spinach (Spinacia oleracea) chloroplast sedoheptulose-1,7-bisphosphatase. Activation and deactivation, and immunological relationship to fructose-1,6-bisphosphatase. Biochem J 253(1):243–248PubMedGoogle Scholar
  13. Chardot T, Meunier JC (1990) Fructose-1,6-bisphosphate and calcium activate oxidized spinach (Spinacia oleracea) chloroplast fructose-1,6-bisphosphatase. Plant Sci 70(1):1–9CrossRefGoogle Scholar
  14. Charles SA, Halliwell B (1980) Action of calcium ions on spinach (Spinacia oleracea) chloroplast fructose bisphosphatase and other enzymes of the Calvin cycle. Biochem J 188(3):775–779PubMedGoogle Scholar
  15. Chen C, Kazimir J, Cheniae GM (1995) Calcium modulates the photoassembly of photosystem II (Mn)4-clusters by preventing ligation of nonfunctional high-valency states of manganese. Biochemistry 34(41):13511–13526PubMedCrossRefGoogle Scholar
  16. Chigri F, Soll J, Vothknecht UC (2005) Calcium regulation of chloroplast protein import. Plant J 42(6):821–831. doi: 10.1111/j.1365-313X.2005.02414.x PubMedCrossRefGoogle Scholar
  17. Chigri F, Hormann F, Stamp A, Stammers DK, Bolter B, Soll J, Vothknecht UC (2006) Calcium regulation of chloroplast protein translocation is mediated by calmodulin binding to Tic32. Proc Natl Acad Sci U S A 103(43):16051–16056. doi: 10.1073/pnas.0607150103 PubMedCrossRefGoogle Scholar
  18. Chigri F, Flosdorff S, Pilz S, Kolle E, Dolze E, Gietl C, Vothknecht UC (2011) The Arabidopsis calmodulin-like proteins AtCML30 and AtCML3 are targeted to mitochondria and peroxisomes, respectively. Plant Mol Biol. doi: 10.1007/s11103-011-9856-z
  19. Chitnis PR (2001) Photosystem I: function and physiology. Annu Rev Plant Physiol Plant Mol Biol 52:593–626PubMedCrossRefGoogle Scholar
  20. Clapham DE (2007) Calcium signaling. Cell 131(6):1047–1058. doi: 10.1016/j.cell.2007.11.028 PubMedCrossRefGoogle Scholar
  21. DeFalco TA, Bender KW, Snedden WA (2010) Breaking the code: Ca2+ sensors in plant signalling. Biochem J 425:27–40. doi: 10.1042/Bj20091147 CrossRefGoogle Scholar
  22. Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620. doi: 10.1146/annurev-arplant-070109-104628 PubMedCrossRefGoogle Scholar
  23. Dolmetsch RE, Xu K, Lewis RS (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392(6679):933–936. doi: 10.1038/31960 PubMedCrossRefGoogle Scholar
  24. Dunkley TPJ, Hester S, Shadforth IP, Runions J, Weimar T, Hanton SL, Griffin JL, Bessant C, Brandizzi F, Hawes C, Watson RB, Dupree P, Lilley KS (2006) Mapping the Arabidopsis organelle proteome. Proc Natl Acad Sci 103(17):6518–6523. doi: 10.1073/pnas.0506958103 PubMedCrossRefGoogle Scholar
  25. Enz C, Steinkamp T, Wagner R (1993) Ion channels in the thylakoid membrane (a patch-clamp study). Biochim Biophys Acta 1143(1):67–76CrossRefGoogle Scholar
  26. Ettinger WF, Clear AM, Fanning KJ, Peck ML (1999) Identification of a Ca2+/H+ antiport in the plant chloroplast thylakoid membrane. Plant Physiol 119(4):1379–1386PubMedCrossRefGoogle Scholar
  27. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303(5665):1831–1838. doi: 10.1126/science.1093087 PubMedCrossRefGoogle Scholar
  28. Ferro M, Salvi D, Brugiere S, Miras S, Kowalski S, Louwagie M, Garin J, Joyard J, Rolland N (2003) Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol Cell Proteomics 2(5):325–345. doi: 10.1074/mcp.M300005-MCP200 PubMedGoogle Scholar
  29. Ghanotakisa DF, Babcockb GT, Yocuma CF (1984) Calcium reconstitutes high rates of oxygen evolution in polypeptide depleted Photosystem II preparations. FEBS Lett 167(1):127–130. doi: 10.1016/0014-5793(84)80846-7 CrossRefGoogle Scholar
  30. Han S, Tang R, Anderson LK, Woerner TE, Pei Z-M (2003) A cell surface receptor mediates extracellular Ca2+ sensing in guard cells. Nature 425(6954):196–200, PubMedCrossRefGoogle Scholar
  31. Heredia P, De Las Rivas J (2003) Calcium-dependent conformational change and thermal stability of the isolated PsbO protein detected by FTIR spectroscopy. Biochemistry 42(40):11831–11838. doi: 10.1021/bi034582j PubMedCrossRefGoogle Scholar
  32. Hertig C, Wolosiuk RA (1980) A dual effect of Ca2+ on chloroplast fructose-1,6-bisphosphatase. Biochem Biophys Res Commun 97(1):325–333PubMedCrossRefGoogle Scholar
  33. Hertig CM, Wolosiuk RA (1983) Studies on the hysteretic properties of chloroplast fructose-1,6-bisphosphatase. J Biol Chem 258(2):984–989PubMedGoogle Scholar
  34. Huang L, Berkelman T, Franklin AE, Hoffman NE (1993) Characterization of a gene encoding a Ca(2+)-ATPase-like protein in the plastid envelope. Proc Natl Acad Sci U S A 90(21):10066–10070PubMedCrossRefGoogle Scholar
  35. Ifuku K, Yamamoto Y, Ono TA, Ishihara S, Sato F (2005) PsbP protein, but not PsbQ protein, is essential for the regulation and stabilization of photosystem II in higher plants. Plant Physiol 139(3):1175–1184. doi: 10.1104/pp.105.068643 PubMedCrossRefGoogle Scholar
  36. Johnson CH, Knight MR, Kondo T, Masson P, Sedbrook J, Haley A, Trewavas A (1995) Circadian oscillations of cytosolic and chloroplastic free calcium in plants. Science 269(5232):1863–1865PubMedCrossRefGoogle Scholar
  37. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krausz N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5[thinsp][angst] resolution. Nature 411(6840):909–917, PubMedCrossRefGoogle Scholar
  38. Kasai K, Usami S, Yamada T, Endo Y, Ochi K, Tozawa Y (2002) A RelA-SpoT homolog (Cr-RSH) identified in Chlamydomonas reinhardtii generates stringent factor in vivo and localizes to chloroplasts in vitro. Nucleic Acids Res 30(22):4985–4992PubMedCrossRefGoogle Scholar
  39. Kasai K, Kanno T, Endo Y, Wakasa K, Tozawa Y (2004) Guanosine tetra- and pentaphosphate synthase activity in chloroplasts of a higher plant: association with 70S ribosomes and inhibition by tetracycline. Nucleic Acids Res 32(19):5732–5741. doi: 10.1093/nar/gkh916 PubMedCrossRefGoogle Scholar
  40. Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352(6335):524–526. doi: 10.1038/352524a0 PubMedCrossRefGoogle Scholar
  41. Kovács-Bogdán E, Soll J, Bölter B (2010) Protein import into chloroplasts: the Tic complex and its regulation. Biochim Biophys Acta 1803(6):740–747. doi: 10.1016/j.bbamcr.2010.01.015 PubMedCrossRefGoogle Scholar
  42. Kreimer G, Melkonian M, Latzko E (1985) An electrogenic uniport mediates light-dependent Ca2+ influx into intact spinach chloroplasts. FEBS Lett 180(2):253–258. doi: 10.1016/0014-5793(85)81081-4 CrossRefGoogle Scholar
  43. Kreimer G, Melkonian M, Holtum JA, Latzko E (1988) Stromal free calcium concentration and light-mediated activation of chloroplast fructose-1,6-bisphosphatase. Plant Physiol 86:423–428PubMedCrossRefGoogle Scholar
  44. Krieger A, Weis E (1993) The role of calcium in the pH-dependent control of Photosystem II. Photosynth Res 37(2):117–130. doi: 10.1007/bf02187470 CrossRefGoogle Scholar
  45. Kruk J, Burda K, Jemioła-Rzemińska M, Strzałka K (2003) The 33 kDa protein of photosystem II is a low-affinity calcium- and lanthanide-binding protein. Biochemistry 42(50):14862–14867. doi: 10.1021/bi0351413 PubMedCrossRefGoogle Scholar
  46. Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22(3):541–563. doi: 10.1105/tpc.109.072686 PubMedCrossRefGoogle Scholar
  47. Larkum AWD (1968) Ionic relations of chloroplasts in vivo. Nature 218(5140):447–449CrossRefGoogle Scholar
  48. Li W, Llopis J, Whitney M, Zlokarnik G, Tsien RY (1998) Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature 392(6679):936–941. doi: 10.1038/31965 PubMedCrossRefGoogle Scholar
  49. Masuda S, Tozawa Y, Ohta H (2008) Possible targets of “magic spots” in plant signalling. Plant Signal Behav 3(11):1021–1023Google Scholar
  50. McAinsh MR, Webb A, Taylor JE, Hetherington AM (1995) Stimulus-induced oscillations in guard cell cytosolic free calcium. Plant Cell 7(8):1207–1219. doi: 10.1105/tpc.7.8.1207 PubMedGoogle Scholar
  51. McCormack E, Braam J (2003) Calmodulins and related potential calcium sensors of Arabidopsis. New Phytol 159(3):585–598. doi: doi:10.1046/j.1469-8137.2003.00845.x CrossRefGoogle Scholar
  52. McNamara VP, Gounaris K (1995) Granal photosystem II complexes contain only the high redox potential form of cytochrome b-559 which is stabilised by the ligation of calcium. Biochim Biophys Acta 1231(3):289–296. doi: 10.1016/0005-2728(95)00093-x CrossRefGoogle Scholar
  53. Mehlmer N, Parvin N, Hurst CH, Knight MR, Teige M, Vothknecht UC (2011) A toolset of aequorin expression vectors for in planta studies of subcellular calcium concentrations in Arabidopsis thaliana. J Exp Bot. doi: 10.1093/jxb/err406
  54. Miqyass M, van Gorkom H, Yocum C (2007) The PSII calcium site revisited. Photosynth Res 92(3):275–287. doi: 10.1007/s11120-006-9124-2 PubMedCrossRefGoogle Scholar
  55. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388(6645):882–887PubMedCrossRefGoogle Scholar
  56. Moreno I, Norambuena L, Maturana D, Toro M, Vergara C, Orellana A, Zurita-Silva A, Ordenes VR (2008) AtHMA1 is a thapsigargin-sensitive Ca2+/heavy metal pump. J Biol Chem 283(15):9633–9641. doi: 10.1074/jbc.M800736200 PubMedCrossRefGoogle Scholar
  57. Murray JW, Barber J (2006) Identification of a calcium-binding site in the PsbO protein of photosystem II. Biochemistry 45(13):4128–4130. doi: 10.1021/bi052503t PubMedCrossRefGoogle Scholar
  58. Muto S, Izawa S, Miyachi S (1982) Light-induced Ca2+ uptake by intact chloroplasts. FEBS Lett 139(2):250–254CrossRefGoogle Scholar
  59. Neish AC (1939) Studies on chloroplasts. II. Their chemical composition and the distribution of certain metabolites between the chloroplasts and the remainder of the leaf. Biochem J 33:300–308PubMedGoogle Scholar
  60. Nobel PS (1969) Light-induced changes in the ionic content of chloroplasts in Pisum sativum. Biochim Biophys Acta 172(1):134–143. doi: 10.1016/0005-2728(69)90098-x PubMedCrossRefGoogle Scholar
  61. Nobel PS, Murakami S, Takamiya A (1966) Localization of light-induced strontium accumulation in spinach chloroplasts. Plant Cell Physiol 7(2):263–275Google Scholar
  62. Nomura H, Komori T, Kobori M, Nakahira Y, Shiina T (2008) Evidence for chloroplast control of external Ca2+-induced cytosolic Ca2+ transients and stomatal closure. Plant J 53(6):988–998. doi: 10.1111/j.1365-313X.2007.03390.x PubMedCrossRefGoogle Scholar
  63. O'Keefe DP, Dilley RA (1977) The effect of chloroplast coupling factor removal on thylakoid membrane ion permeability. Biochim Biophys Acta 461(1):48–60. doi: 10.1016/0005-2728(77)90068-8 PubMedCrossRefGoogle Scholar
  64. Peltier J-B, Ytterberg AJ, Sun Q, van Wijk KJ (2004) New functions of the thylakoid membrane proteome of Arabidopsis thaliana revealed by a simple, fast, and versatile fractionation strategy. J Biol Chem 279(47):49367–49383. doi: 10.1074/jbc.M406763200 PubMedCrossRefGoogle Scholar
  65. Petroutsos D, Busch A, Janssen I, Trompelt K, Bergner SV, Weinl S, Holtkamp M, Karst U, Kudla J, Hippler M (2011) The chloroplast calcium sensor CAS is required for photoacclimation in Chlamydomonas reinhardtii. Plant Cell 23(8):2950–2963. doi: 10.1105/tpc.111.087973 PubMedCrossRefGoogle Scholar
  66. Portis AR Jr, Heldt HW (1976) Light-dependent changes of the Mg2+ concentration in the stroma in relation to the Mg2+ dependency of CO2 fixation in intact chloroplasts. Biochim Biophys Acta 449(3):434–436PubMedCrossRefGoogle Scholar
  67. Potrykus K, Cashel M (2008) (p)ppGpp still magical? Annu Rev Microbiol 62:35–51. doi: 10.1146/annurev.micro.62.081307.162903 PubMedCrossRefGoogle Scholar
  68. Pou De Crescenzo MA, Gallais S, Leon A, Laval-Martin DL (2001) Tween-20 activates and solubilizes the mitochondrial membrane-bound, calmodulin dependent NAD+ finase of Avena sativa L. J Membr Biol 182(2):135–146PubMedCrossRefGoogle Scholar
  69. Reddy VS, Ali GS, Reddy ASN (2002) Genes encoding calmodulin-binding proteins in the Arabidopsis genome. J Biol Chem 277(12):9840–9852. doi: 10.1074/jbc.M111626200 PubMedCrossRefGoogle Scholar
  70. Roh MH, Shingles R, Cleveland MJ, McCarty RE (1998) Direct measurement of calcium transport across chloroplast inner envelope vesicles. Plant Physiol 118(4):1447–1454PubMedCrossRefGoogle Scholar
  71. Rosa L (1981) The rapid activation in vitro of the chloroplast fructose 1,6-bisphosphatase followed using a new assay procedure. FEBS Lett 134(2):151–154. doi: 10.1016/0014-5793(81)80589-3 CrossRefGoogle Scholar
  72. Sai J, Johnson CH (2002) Dark-stimulated calcium ion fluxes in the chloroplast stroma and cytosol. Plant Cell 14(6):1279–1291. doi: 10.1105/tpc.000653 PubMedCrossRefGoogle Scholar
  73. Sauer A, Robinson DG (1985) Calmodulin dependent NAD-kinase is associated with both the outer and inner mitochondrial membranes in maize roots. Planta 166(2):227–233CrossRefGoogle Scholar
  74. Schürmann P, Wolosiuk RA (1978) Studies on the regulatory properties of chloroplast fructose-1,6-bisphosphatase. Biochim Biophys Acta 522(1):130–138. doi: 10.1016/0005-2744(78)90329-7 PubMedCrossRefGoogle Scholar
  75. Schwartz A (1985) Role of Ca and EGTA on stomatal movements in Commelina communis L. Plant Physiol 79(4):1003–1005PubMedCrossRefGoogle Scholar
  76. Shutova T, Nikitina J, Deikus G, Andersson B, Klimov V, Samuelsson G (2005) Structural dynamics of the manganese-stabilizing protein-effect of pH, calcium, and manganese. Biochemistry 44(46):15182–15192. doi: 10.1021/bi0512750 PubMedCrossRefGoogle Scholar
  77. Stael S, Bayer RG, Mehlmer N, Teige M (2011a) Protein N-acylation overrides differing targeting signals. FEBS Lett 585(3):517–522. doi: 10.1016/j.febslet.2011.01.001 PubMedCrossRefGoogle Scholar
  78. Stael S, Rocha AG, Robinson AJ, Kmiecik P, Vothknecht UC, Teige M (2011b) Arabidopsis calcium-binding mitochondrial carrier proteins as potential facilitators of mitochondrial ATP-import and plastid SAM-import. FEBS Lett 585(24):3935–3940. doi: 10.1016/j.febslet.2011.10.039 PubMedCrossRefGoogle Scholar
  79. Stael S, Rocha AG, Wimberger T, Anrather D, Vothknecht UC, Teige M (2011c) Crosstalk between calcium signalling and protein phosphorylation at the thylakoid membrane. J Exp Bot. doi: 10.1093/jxb/err394
  80. Surek B, Kreimer G, Melkonian M, Latzko E (1987) Spinach ferredoxin is a calcium-binding protein. Planta 171(4):565–568. doi: 10.1007/bf00392307 CrossRefGoogle Scholar
  81. Takahashi K, Kasai K, Ochi K (2004) Identification of the bacterial alarmone guanosine 5′-diphosphate 3′-diphosphate (ppGpp) in plants. Proc Natl Acad Sci 101(12):4320–4324. doi: 10.1073/pnas.0308555101 PubMedCrossRefGoogle Scholar
  82. Tang R-H, Han S, Zheng H, Cook CW, Choi CS, Woerner TE, Jackson RB, Pei Z-M (2007) Coupling diurnal cytosolic Ca2+ oscillations to the CAS-IP3 pathway in Arabidopsis. Science 315(5817):1423–1426. doi: 10.1126/science.1134457 PubMedCrossRefGoogle Scholar
  83. Tozawa Y, Nomura Y (2011) Signalling by the global regulatory molecule ppGpp in bacteria and chloroplasts of land plants. Plant biology 13(5):699–709. doi: 10.1111/j.1438-8677.2011.00484.x PubMedCrossRefGoogle Scholar
  84. Tozawa Y, Nozawa A, Kanno T, Narisawa T, Masuda S, Kasai K, Nanamiya H (2007) Calcium-activated (p)ppGpp synthetase in chloroplasts of land plants. J Biol Chem 282(49):35536–35545. doi: 10.1074/jbc.M703820200 PubMedCrossRefGoogle Scholar
  85. Trewavas A (1999) Le calcium, C'est la vie: calcium makes waves. Plant Physiol 120(1):1–6PubMedCrossRefGoogle Scholar
  86. Turner WL, Waller JC, Vanderbeld B, Snedden WA (2004) Cloning and characterization of two NAD Kinases from Arabidopsis. Identification of a calmodulin binding isoform. Plant Physiol 135(3):1243–1255. doi: 10.1104/pp.104.040428 PubMedCrossRefGoogle Scholar
  87. Vainonen JP, Sakuragi Y, Stael S, Tikkanen M, Allahverdiyeva Y, Paakkarinen V, Aro E, Suorsa M, Scheller HV, Vener AV, Aro EM (2008) Light regulation of CaS, a novel phosphoprotein in the thylakoid membrane of Arabidopsis thaliana. FEBS J 275(8):1767–1777. doi: 10.1111/j.1742-4658.2008.06335.x PubMedCrossRefGoogle Scholar
  88. Wang W-H, Yi X-Q, Han A-D, Liu T-W, Chen J, Wu F-H, Dong X-J, He J-X, Pei Z-M, Zheng H-L (2011) Calcium-sensing receptor regulates stomatal closure through hydrogen peroxide and nitric oxide in response to extracellular calcium in Arabidopsis. J Exp Bot. doi: 10.1093/jxb/err259
  89. Weinl S, Held K, Schlücking K, Steinhorst L, Kuhlgert S, Hippler M, Kudla J (2008) A plastid protein crucial for Ca2+-regulated stomatal responses. New Phytol 179(3):675–686. doi: 10.1111/j.1469-8137.2008.02492.x PubMedCrossRefGoogle Scholar
  90. Wolosiuk RA, Hertig CM, Nishizawa AN, Buchanan BB (1982) Enzyme regulation in C-4 photosynthesis. 3. Role of Ca2+ in thioredoxin-linked activation of sedoheptulose bisphosphatase from corn leaves. FEBS Lett 140(1):31–35CrossRefGoogle Scholar
  91. Yamagishi A, Satoh K, Katoh S (1981) The concentrations and thermodynamic activities of cations in intact Bryopsis chloroplasts. Biochim Biophys Acta 637(2):252–263CrossRefGoogle Scholar
  92. Yang T, Poovaiah BW (2000) Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein. Biochem Biophys Res Commun 275(2):601–607. doi: 10.1006/bbrc.2000.3335 PubMedCrossRefGoogle Scholar
  93. Yi X, McChargue M, Laborde S, Frankel LK, Bricker TM (2005) The manganese-stabilizing protein is required for photosystem II assembly/stability and photoautotrophy in higher plants. J Biol Chem 280(16):16170–16174. doi: 10.1074/jbc.M501550200 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Biology I, BotanyLMU MunichPlanegg-MartinsriedGermany
  2. 2.Center for Integrated Protein Science (Munich) at the Department of Biology of the LMU MunichMunichGermany

Personalised recommendations