Protoplasma

, Volume 249, Supplement 2, pp 157–167 | Cite as

Probing and tracking organelles in living plant cells

  • Tong Chen
  • Xiaohua Wang
  • Daniel von Wangenheim
  • Maozhong Zheng
  • Jozef Šamaj
  • Wanquan Ji
  • Jinxing Lin
Original Article

Abstract

Intracellular organelle movements and positioning play pivotal roles in enabling plants to proliferate life efficiently and to survive diverse environmental stresses. The elaborate dissection of organelle dynamics and their underlying mechanisms (e.g., the role of the cytoskeleton in organelle movements) largely depends on the advancement and efficiency of organelle tracking systems. Here, we provide an overview of some recently developed tools for labeling and tracking organelle dynamics in living plant cells.

Keywords

Organelle dynamics Fluorescent labeling Microscopy Organelle movement Tracking 

References

  1. Arimura S, Yamamoto J, Aida GP, Nakazono M, Tsutsumi N (2004) Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution. Proc Natl Acad Sci USA 101:7805–7808PubMedCrossRefGoogle Scholar
  2. Avisar D, Prokhnevsky AI, Makarova KS, Koonin EV, Dolja VV (2008) Myosin XI-K is required for rapid trafficking of Golgi stacks, peroxisomes and mitochondria in leaf cells of Nicotiana benthamiana. Plant Physiol 146:1098–1108PubMedCrossRefGoogle Scholar
  3. Bates M, Huang B, Zhuang XW (2008) Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes. Curr Opin Chem Biol 12:505–514PubMedCrossRefGoogle Scholar
  4. Bayle V, Nussaume L, Bhat RA (2008) Combination of novel green fluorescent protein mutant TSapphire and DsRed variant mOrange to set up a versatile in planta FRET-FLIM assay. Plant Physiol 148:51–60PubMedCrossRefGoogle Scholar
  5. Brown SC, Bolte S, Gaudin M, Pereira C, Marion J, Soler M-N, Satiat-Jeunemaitre B (2010) Exploring plant endomembrane dynamics using the photoconvertible protein Kaede. Plant J 63:696–711PubMedCrossRefGoogle Scholar
  6. Cappello G, Badoual M, Ott A, Prost J, Busoni L (2003) Kinesin motion in the absence of external forces characterized by interference total internal reflection microscopy. Phys Rev E Stat Nonlin Soft Matter Phys 68:021907PubMedCrossRefGoogle Scholar
  7. Carroll AD, Moyen C, Van Kesteren P, Tooke F, Battey NH, Brownlee C (1998) Ca2+, annexins, and GTP modulate exocytosis from maize root cap protoplasts. Plant Cell 10:1267–1276PubMedGoogle Scholar
  8. Chudako DM, Lukyanov S, Lukyanov KA (2005) Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol 23:605–613CrossRefGoogle Scholar
  9. Chuong SDX, Franceschi VR, Edwards GE (2006) The cytoskeleton maintains organelle partitioning required for single-cell C4 photosynthesis in Chenopodiaceae species. Plant Cell 18:2207–2223PubMedCrossRefGoogle Scholar
  10. Derfus AM, Chan WCW, Bhatia SN (2004) Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv Mater 16:961–966CrossRefGoogle Scholar
  11. Dhonukshe P, Laxalt AM, Goedhart J, Gadellaa TWJ, Munnik T (2003) Phospholipase D activation correlates with microtubule reorganization in living plant cells. Plant Cell 15:2666–2679PubMedCrossRefGoogle Scholar
  12. Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J, Stierhof YD, Friml J (2007) Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol 17:520–527PubMedCrossRefGoogle Scholar
  13. Doniwa Y, Arimura S, Tsutsumi N (2007) Mitochondria use actin filaments as rails for fast translocation in Arabidopsis and tobacco cells. Plant Biotechnol 24:441–447CrossRefGoogle Scholar
  14. Estevezl JM, Somerville C (2006) FlAsH-based live-cell fluorescent imaging of synthetic peptides expressed in Arabidopsis and tobacco. Biotechniques 41:569–574CrossRefGoogle Scholar
  15. Fitzgibbon J, Bell K, King E, Oparka K (2010) Super-resolution imaging of plasmodesmata using three-dimensional structured illumination microscopy. Plant Physiol 153:1453–1463Google Scholar
  16. Fujikawa Y, Kato N (2007) Split luciferase complementation assay to study protein–protein interactions in Arabidopsis protoplasts. Plant J 52:185–195PubMedCrossRefGoogle Scholar
  17. Geldner N, Dénervaud-Tendon V, Hyman DL, Mayer U, Stierhof Y-D, Chory J (2009) Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J 59:169–178PubMedCrossRefGoogle Scholar
  18. Gutierrez R, Grossmann G, Frommer WB, Ehrhardt DW (2010) Opportunities to explore plant membrane organization with super-resolution microscopy. Plant Physiol 154:463–466PubMedCrossRefGoogle Scholar
  19. Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94:2122–2127PubMedCrossRefGoogle Scholar
  20. Hepler PK, Gunning BES (1998) Confocal fluorescence microscopy of plant cells. Protoplasma 201:121–157CrossRefGoogle Scholar
  21. Jelinkova A, Malinska K, Simon S, Kleine-Vehn J, Parezova M, Pejchar P, Kubes M, Martinec J, Friml J, Zazimalova E, Petrasek J (2010) Probing plant membranes with FM dyes: tracking, dragging or blocking? Plant J 61:883–892PubMedCrossRefGoogle Scholar
  22. Jurgens G (2004) Membrane trafficking in plants. Annu Rev Cell Dev Biol 20:481–504PubMedCrossRefGoogle Scholar
  23. Konopka CA, Bednarek SY (2008) Variable-angle epifluorescence microscopy: a new way to look at protein dynamics in the plant cell cortex. Plant J 53:186–196PubMedCrossRefGoogle Scholar
  24. Konopka CA, Backuesb SK, Bednarek SY (2008) Dynamics of Arabidopsis dynamin-related protein 1C and a clathrin light chain at the plasma membrane. Plant Cell 20:1363–1380PubMedCrossRefGoogle Scholar
  25. Langhorst MF, Genisyuerek S, Stuermer CA (2006) Accumulation of FlAsH/Lumio Green in active mitochondria can be reversed by beta-mercaptoethanol for specific staining of tetracysteine-tagged proteins. Histochem Cell Biol 125:743–747PubMedCrossRefGoogle Scholar
  26. Li XJ, Wang XH, Yang Y, Li RL, He QH, Fang XH, Luu D-T, Maurel C, Lin JX (2011) Single-molecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. Plant CellGoogle Scholar
  27. Lippincott-Schwartz J, Snapp E, Kenworthy A (2001) Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2:444–456PubMedCrossRefGoogle Scholar
  28. Lippincott-Schwartz J, Altan-Bonnet N, Patterson GH (2003) Photobleaching and photoactivation: following protein dynamics in living cells. Nat Cell Biol, Suppl, pp S7–S14Google Scholar
  29. Lu L, Lee Y-RJ, Pan R, Maloof JN, Liu B (2005) An internal motor kinesin is associated with the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis. Mol Biol Cell 16:811–823PubMedCrossRefGoogle Scholar
  30. Lukyanov KA, Chudako DM, Lukyanov S, Verkhusha W (2005) Innovation: photoactivatable fluorescent proteins. Nat Rev Mol Cell Biol 6:885–891PubMedCrossRefGoogle Scholar
  31. Mathur J, Mathur N, Hulskamp M (2002) Simultaneous visualization of peroxisomes and cytoskeletal elements reveals actin and not microtubule-based peroxisome motility in plants. Plant Physiol 128:1031–1045PubMedCrossRefGoogle Scholar
  32. Mathur J, Radhamony R, Sinclair AM, Donoso A, Dunn N, Roach E, Radford D, Mohaghegh M, Logan DC, Kokolic K, Mathur N. (2010) mEosFP-based green-to-red photoconvertible subcellular probes for plants. Plant Physiol 154:1573–1587Google Scholar
  33. Matsuoka S, Shibata T, Ueda M (2009) Statistical analysis of lateral diffusion and multistate kinetics in single-molecule imaging. Biophys J 19:1115–1124CrossRefGoogle Scholar
  34. Michard E, Dias P, Feijo JA (2008) Tobacco pollen tubes as cellular models for ion dynamics: improved spatial and temporal resolution of extracellular flux and free cytosolic concentration of calcium and photons using pHluorin and YC3.1 CaMeleon. Sex Plant Reprod 21:169–181CrossRefGoogle Scholar
  35. Miyawaki A, Sawano A, Kogure T (2003) Lighting up cells: labelling proteins with fluorophores. Nat Cell Biol, Supp l, pp S1–S7Google Scholar
  36. Moseyko N, Feldman LJ (2001) Expression of pH-sensitive green fluorescent protein in Arabidopsis thaliana. Plant Cell Environ 24:557–563PubMedCrossRefGoogle Scholar
  37. Nebenfuhr A, Gallagher LA, Dunahay TG, Frohlick JA, Mazurkiewicz AM, Meehl JB, Staehelin LA (1999) Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol 121:1127–1142PubMedCrossRefGoogle Scholar
  38. Nebenführ A (2007) Organelle dynamics during cell division. In: Plant Cell Monogr (9) D.P.S. Verma and Z. Hong: Cell Division Control in Plants. Springer-Verlag Berlin Heidelberg 195–206Google Scholar
  39. Nelson BK, Cai X, A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136PubMedCrossRefGoogle Scholar
  40. Nick P, Han M, An G (2009) Auxin stimulates its own transport by actin reorganization. Plant Physiol 151:155–167PubMedCrossRefGoogle Scholar
  41. Parton RM, Parton SF, Watahiki MK, Trewavas AJ (2001) Dynamics of the apical vesicle accumulation and the rate of growth are related in individual pollen tubes. J Cell Sci 114:2685–2695PubMedGoogle Scholar
  42. Peremyslov VV, Prokhnevsky AI, Avisar D, Dolja VV (2008) Two class XI myosins function in organelle trafficking and root hair development in Arabidopsis thaliana. Plant Physiol 146:1109–1116PubMedCrossRefGoogle Scholar
  43. Ravindran S, Kim S, Martin R, Lord EM, Ozkan CS (2005) Quantum dots as bio-labels for the localization of a small plant adhesion protein. Nanotechnology 16:1–4CrossRefGoogle Scholar
  44. Reck-Peterson SL, Yildiz A, Carter AP, Gennerich A, Zhang N, Vale RD (2006) Single-molecule analysis of dynein processivity and stepping behavior. Cell 126:335–348Google Scholar
  45. Richter S, Voß U, Jurgens G (2009) Post-Golgi traffic in plants. Traffic 10:819–828PubMedCrossRefGoogle Scholar
  46. Romagnoli S, Cai G, Faleri C, Yokota E, Shimmen T, Cresti M (2007) Microtubule- and actin filament-dependent motors are distributed on pollen tube mitochondria and contribute differently to their movement. Plant Cell Physiol 48:345–361PubMedCrossRefGoogle Scholar
  47. Runions J, Brach T, Kuhner S, Hawes C (2006) Photoactivation of GFP reveals protein dynamics within the endoplasmic reticulum membrane. J Exp Bot 57:43–50PubMedCrossRefGoogle Scholar
  48. Ruthardt N, Gulde N, Spiegel H, Fischer R, Emans N (2005) Four-dimensional imaging of transvacuolar strand dynamics in tobacco BY-2 cells. Protoplasma 225:205–215PubMedCrossRefGoogle Scholar
  49. Ryan TA (2001) Presynaptic imaging techniques. Curr Opin Neurobiol 11:544–549PubMedCrossRefGoogle Scholar
  50. Šamaj J, Muller J, Beck M, Bohm N, Menzel D (2006) Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant Sci 11:594–600PubMedCrossRefGoogle Scholar
  51. Saxton MJ, Jacobson K (1997) Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26:373–399PubMedCrossRefGoogle Scholar
  52. Schaefer LH, Schuster D, Herz H (2001) Generalized approach for accelerated maximum likelihood based image restoration applied to three-dimensional fluorescence microscopy. J Microsc 204:99–107PubMedCrossRefGoogle Scholar
  53. Schneckenburger H (2005) Total internal reflection fluorescence microscopy: technical innovations and novel applications. Curr Opin Biotechnol 16:13–18PubMedCrossRefGoogle Scholar
  54. Schulte A, Lorenzen I, Böttcher M, Plieth C (2006) A novel fluorescent pH probe for expression in plants. Plant Methods 2:7PubMedCrossRefGoogle Scholar
  55. Solomon EB, Matthews KR (2005) Use of fluorescent microspheres as a tool to investigate bacterial interactions with growing plants. J Food Prot 68:870–873PubMedGoogle Scholar
  56. Solomon EB, Matthews KR (2006) Interaction of live and dead Escherichia coli O157:H7 and fluorescent microspheres with lettuce tissue suggests bacterial processes do not mediate adherence. Lett Appl Microbiol 42:88–93PubMedCrossRefGoogle Scholar
  57. Sparkes I, Runions J, Hawes C, Griffing L (2009) Movement and remodeling of the endoplasmic reticulum in nondividing cells of tobacco leaves. Plant Cell 21:3937–3949PubMedCrossRefGoogle Scholar
  58. Stephens DJ, Allan VJ (2003) Light microscopy techniques for live cell imaging. Science 300:82–86PubMedCrossRefGoogle Scholar
  59. Steyer JA, Almers W (2001) A real-time view of life within 100 nm of the plasma membrane. Nat Rev Mol Cell Biol 2:268–275PubMedCrossRefGoogle Scholar
  60. Sund SE, Axelrod D (2000) Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching. Biophy J 79:1655–1669CrossRefGoogle Scholar
  61. Sutter JU, Campanoni P, Tyrrell M, Blatt MR (2006) Selective mobility and sensitivity to SNAREs is exhibited by the Arabidopsis KAT1 K+ channel at the plasma membrane. Plant Cell 18:935–954PubMedCrossRefGoogle Scholar
  62. Tominaga M, Kojima H, Yokota E, Orii H, Nakamori R, Katayama E, Anson M, Shimmen T, Oiwa K (2003) Higher plant myosin XI moves processively on actin with 35 nm steps at high velocity. EMBO J 22:1263–1272PubMedCrossRefGoogle Scholar
  63. van Gestel K, Kohler RH, Verbelen JP (2002) Plant mitochondria move on F-actin, but their positioning in the cortical cytoplasm depends on both F-actin and microtubules. J Exp Bot 53:659–667PubMedCrossRefGoogle Scholar
  64. Voigt B, Timmers AC, Šamaj J, Hlavacka A, Ueda T, Preuss M, Nielsen E, Mathur J, Emans N, Stenmark H, Nakano A, Baluška F, Menzel D (2005) Actin-based motility of endosomes is linked to the polar tip growth of root hairs. Eur J Cell Biol 84:609–621Google Scholar
  65. Wada M, Suetsugu N (2004) Plant organelle positioning. Curr Opin Plant Biol 7:626–631PubMedCrossRefGoogle Scholar
  66. Wan YL, Ash WM, Fan LS, Hao HQ, Kim MK, Lin JX (2011) Variable-angle total internal reflection fluorescence microscopy of intact cells of Arabidopsis thaliana. Plant Methods 7:27. doi:10.1186/1746-4811-7-27 PubMedCrossRefGoogle Scholar
  67. Wang E, Babbey CM, Dunn KW (2005) Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems. J Microsc 218:148–159PubMedCrossRefGoogle Scholar
  68. Wang XH, Teng Y, Wang QL, Li XJ, Sheng XY, Zheng MZ, Šamaj J, Baluška F, Lin JX (2006) Imaging of dynamic secretory vesicles in living pollen tubes of Picea meyeri using evanescent wave microscopy. Plant Physiol 141:1591–1603PubMedCrossRefGoogle Scholar
  69. Wang Q, Chen B, Liu P, Zheng M, Wang Y, Cui S, Sun D, Fang X, Liu C, Lucas W, Lin J (2009) Calmodulin binds to extracellular sites on the plasma membrane of plant cells and elicits a rise in intracellular calcium concentration. J Biol Chem 284:12000–12007PubMedCrossRefGoogle Scholar
  70. Watanabe W, Shimada T, Matsunaga S, Kurihara D, Fukui K, Arimura S, Tsutsumi N, Isobe K, Itoh K (2007) Single-organelle tracking by two-photon conversion. Opt Express 15:2490–2498PubMedCrossRefGoogle Scholar
  71. Yu G, Liang J, He Z, Sun MX (2006) Quantum dot-mediated detection of γ-aminobutyric acid binding sites on the surface of living pollen protoplasts in tobacco. Chem Biol 13:723–731PubMedCrossRefGoogle Scholar
  72. Zheng MZ, Beck M, Müller J, Chen T, Wang XH, Wang F, Wang QL, Wang YH, Baluska F, Logan DC, Šamaj J, Lin JX (2009) Actin turnover is required for myosin-dependent mitochondrial movements in Arabidopsis root hairs. PLoS One 18:e5961CrossRefGoogle Scholar
  73. Zhu YF, Wang YQ, Li RL, Song XF, Wang QL, Huang SJ, Jin JB, Liu CM, Lin JX (2010) Analysis of interactions among the CLAVATA3 receptors reveals a direct interaction between CLAVATA2 and CORYNE in Arabidopsis. Plant J 61:223–233PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Tong Chen
    • 1
  • Xiaohua Wang
    • 1
  • Daniel von Wangenheim
    • 2
  • Maozhong Zheng
    • 1
  • Jozef Šamaj
    • 3
    • 4
  • Wanquan Ji
    • 5
  • Jinxing Lin
    • 1
    • 6
  1. 1.Key Laboratory of Plant Molecular Physiology, Institute of BotanyChinese Academy of SciencesBeijingChina
  2. 2.Institute of Cellular and Molecular BotanyUniversity of BonnBonnGermany
  3. 3.Institute of Plant Genetics and BiotechnologySlovak Academy of SciencesNitraSlovak Republic
  4. 4.Faculty of Natural SciencesPalacky University OlomoucOlomoucCzech Republic
  5. 5.College of Agriculture, Northwest Sci-Tech University of Agriculture and ForestryShanxiChina
  6. 6.Institute of BotanyChinese Academy of SciencesBeijingChina

Personalised recommendations