Protoplasma

, Volume 249, Issue 4, pp 919–942 | Cite as

The role of ATP-binding cassette transporters in bacterial pathogenicity

  • Victoria G. Lewis
  • Miranda P. Ween
  • Christopher A. McDevitt
Review Article

Abstract

The ATP-binding cassette transporter superfamily is present in all three domains of life. This ubiquitous class of integral membrane proteins have diverse biological functions, but their fundamental role involves the unidirectional translocation of compounds across cellular membranes in an ATP coupled process. The importance of this class of proteins in eukaryotic systems is well established as typified by their association with genetic diseases and roles in the multi-drug resistance of cancer. In stark contrast, the ABC transporters of prokaryotes have not been exhaustively investigated due to the sheer number of different roles and organisms in which they function. In this review, we examine the breadth of functions associated with microbial ABC transporters in the context of their contribution to bacterial pathogenicity and virulence.

Keywords

ABC transporter Prokaryote Pathogenicity Virulence Drug resistance Secreted toxin 

Abbreviations

ABC

ATP-binding cassette

Bac.

Bacillus

Bor.

Bordetella

C.

Campylobacter

CM

Cytoplasmic membrane

CPS

Capsular polysaccharides

Da

Daltons

DPP

di- or tripeptide ABC permeases

E.

Escherichia

Ent.

Enterococcus

EPS

Exopolysaccharide

GAS

Group A Streptococcus

GBS

Group B Streptococcus

Gln

Glutamine

Glu

Glutamate

H.

Haemophilus

Hly

α-Hemolysin

Ig

Immunoglobulin

Lac.

Lactococcus

Lis.

Listeria

LPS

Lipopolysaccharide

M.

Mycobacterium

MFP

Membrane fusion protein

MDR

Multi-drug resistance

N.

Neisseria

NBD

Nucleotide-binding domains

NRAMP

Natural resistance-associated macrophage protein

O

Oligosaccharide

O-units

Oligosaccharide units

OMP

Outer membrane porin

Opp

Oligopeptide ABC permeases

P.

Pseudomonas

PG

Peptidoglycan

Pvd

Pyoverdin

RTX

Repeats-in-toxin

SBP

Substrate-binding protein

S

Surface

Ser.

Serratia

Sta.

Staphylococcus

Stp.

Streptomyces

Str.

Streptococcus

TC

Transporter classification

TCID

Transporter classification identification

TM

Transmembrane

TMD

Transmembrane domain

V.

Vibrio

Y.

Yersinia

Notes

Acknowledgements

MPW is supported by the Channel 7 Children’s Research Foundation (Grant #103) and VGL is supported by an Australian Postgraduate Award and Postgraduate Stipend from the Australian Cystic Fibrosis Research Foundation. We thank James C. Paton for critical insight and discussions.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Achtman M, Pluschke G (1986) Clonal analysis of descent and virulence among selected Escherichia coli. Annu Rev Microbiol 40:185–210PubMedCrossRefGoogle Scholar
  2. Adhikari P, Kirby SD, Nowalk AJ, Veraldi KL, Schryvers AB, Mietzner TA (1995) Biochemical characterization of a Haemophilus influenzae periplasmic iron transport operon. J Biol Chem 270:25142–25149PubMedCrossRefGoogle Scholar
  3. Adhikari P, Berish SA, Nowalk AJ, Veraldi KL, Morse SA, Mietzner TA (1996) The fbpABC locus of Neisseria gonorrhoeae functions in the periplasm-to-cytosol transport of iron. J Bacteriol 178:2145–2149PubMedGoogle Scholar
  4. Alaimo C et al (2006) Two distinct but interchangeable mechanisms for flipping of lipid-linked oligosaccharides. EMBO J 25:967–976PubMedCrossRefGoogle Scholar
  5. Ammendola S, Pasquali P, Pistoia C, Petrucci P, Petrarca P, Rotilio G, Battistoni A (2007) High-affinity Zn2+ uptake system ZnuABC is required for bacterial zinc homeostasis in intracellular environments and contributes to the virulence of Salmonella enterica. Infect Immun 75:5867–5876PubMedCrossRefGoogle Scholar
  6. Anderson DS, Adhikari P, Nowalk AJ, Chen CY, Mietzner TA (2004) The hFbpABC transporter from Haemophilus influenzae functions as a binding-protein-dependent ABC transporter with high specificity and affinity for ferric iron. J Bacteriol 186:6220–6229PubMedCrossRefGoogle Scholar
  7. Ando M, Manabe YC, Converse PJ, Miyazaki E, Harrison R, Murphy JR, Bishai WR (2003) Characterization of the role of the divalent metal ion-dependent transcriptional repressor MntR in the virulence of Staphylococcus aureus. Infect Immun 71:2584–2590PubMedCrossRefGoogle Scholar
  8. Andreini C, Banci L, Bertini I, Rosato A (2006a) Counting the zinc-proteins encoded in the human genome. J Proteome Res 5:196–201PubMedCrossRefGoogle Scholar
  9. Andreini C, Banci L, Bertini I, Rosato A (2006b) Zinc through the three domains of life. J Proteome Res 5:3173–3178PubMedCrossRefGoogle Scholar
  10. Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13:1205–1218PubMedCrossRefGoogle Scholar
  11. Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237PubMedCrossRefGoogle Scholar
  12. Angelos JA, Hess JF, George LW (2003) An RTX operon in hemolytic Moraxella bovis is absent from nonhemolytic strains. Vet Microbiol 92:363–377PubMedCrossRefGoogle Scholar
  13. Arrecubieta C, Hammarton TC, Barrett B, Chareonsudjai S, Hodson N, Rainey D, Roberts IS (2001) The transport of group 2 capsular polysaccharides across the periplasmic space in Escherichia coli. Roles for the KpsE and KpsD proteins. J Biol Chem 276:4245–4250PubMedCrossRefGoogle Scholar
  14. Bahl H et al (1997) Molecular biology of S-layers. FEMS Microbiol Rev 20:47–98PubMedCrossRefGoogle Scholar
  15. Bakkes PJ, Jenewein S, Smits SH, Holland IB, Schmitt L (2010) The rate of folding dictates substrate secretion by the Escherichia coli hemolysin type 1 secretion system. J Biol Chem 285:40573–40580PubMedCrossRefGoogle Scholar
  16. Bates CS, Montanez GE, Woods CR, Vincent RM, Eichenbaum Z (2003) Identification and characterization of a Streptococcus pyogenes operon involved in binding of hemoproteins and acquisition of iron. Infect Immun 71:1042–1055PubMedCrossRefGoogle Scholar
  17. Baumann U, Wu S, Flaherty KM, McKay DB (1993) Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. EMBO J 12:3357–3364PubMedGoogle Scholar
  18. Bearden SW, Perry RD (1999) The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague. Mol Microbiol 32:403–414PubMedCrossRefGoogle Scholar
  19. Beasley FC et al (2009) Characterization of staphyloferrin A biosynthetic and transport mutants in Staphylococcus aureus. Mol Microbiol 72:947–963PubMedCrossRefGoogle Scholar
  20. Becker A, Kuster H, Niehaus K, Puhler A (1995) Extension of the Rhizobium meliloti succinoglycan biosynthesis gene cluster: identification of the exsA gene encoding an ABC transporter protein, and the exsB gene which probably codes for a regulator of succinoglycan biosynthesis. Mol Gen Genet 249:487–497PubMedCrossRefGoogle Scholar
  21. Beebee T, Korner A, Bond RP (1972) Differential inhibition of mammalian ribonucleic acid polymerases by an exotoxin from Bacillus thuringiensis. The direct observation of nucleoplasmic ribonucleic acid polymerase activity in intact nuclei. Biochem J 127:619–634PubMedGoogle Scholar
  22. Bengoechea JA, Najdenski H, Skurnik M (2004) Lipopolysaccharide O antigen status of Yersinia enterocolitica O:8 is essential for virulence and absence of O antigen affects the expression of other Yersinia virulence factors. Mol Microbiol 52:451–469PubMedCrossRefGoogle Scholar
  23. Benz G (1966) On the chemical nature of the heat-stable exotoxin of Bacillus thuringiensis. Experientia 22:81–82PubMedCrossRefGoogle Scholar
  24. Benz R, Hardie KR, Hughes C (1994) Pore formation in artificial membranes by the secreted hemolysins of Proteus vulgaris and Morganella morganii. Eur J Biochem 220:339–347PubMedCrossRefGoogle Scholar
  25. Berntsson RP, Smits SH, Schmitt L, Slotboom DJ, Poolman B (2010) A structural classification of substrate-binding proteins. FEBS Lett 584:2606–2617PubMedCrossRefGoogle Scholar
  26. Berry AM, Paton JC (1996) Sequence heterogeneity of PsaA, a 37-kilodalton putative adhesin essential for virulence of Streptococcus pneumoniae. Infect Immun 64:5255–5262PubMedGoogle Scholar
  27. Beutler B, Poltorak A (2000) The search for Lps: 1993–1998. J Endotoxin Res 6:269–293PubMedGoogle Scholar
  28. Beveridge TJ et al (1997) Functions of S-layers. FEMS Microbiol Rev 20:99–149PubMedCrossRefGoogle Scholar
  29. Biemans-Oldehinkel E, Doeven MK, Poolman B (2006) ABC transporter architecture and regulatory roles of accessory domains. FEBS Lett 580:1023–1035PubMedCrossRefGoogle Scholar
  30. Bolhuis H, van Veen HW, Molenaar D, Poolman B, Driessen AJ, Konings WN (1996) Multidrug resistance in Lactococcus lactis: evidence for ATP-dependent drug extrusion from the inner leaflet of the cytoplasmic membrane. EMBO J 15:4239–4245PubMedGoogle Scholar
  31. Borths EL, Locher KP, Lee AT, Rees DC (2002) The structure of Escherichia coli BtuF and binding to its cognate ATP binding cassette transporter. Proc Natl Acad Sci U S A 99:16642–16647PubMedCrossRefGoogle Scholar
  32. Braun V (2001) Iron uptake mechanisms and their regulation in pathogenic bacteria. Int J Med Microbiol 291:67–79PubMedCrossRefGoogle Scholar
  33. Braun V, Hantke K, Koster W (1998) Bacterial iron transport: mechanisms, genetics, and regulation. Met Ions Biol Syst 35:67–145PubMedGoogle Scholar
  34. Braun M, Kuhnert P, Nicolet J, Burnens AP, Frey J (1999) Cloning and characterization of two bistructural S-layer-RTX proteins from Campylobacter rectus. J Bacteriol 181:2501–2506PubMedGoogle Scholar
  35. Bronner D et al (1993) Synthesis of the K5 (group II) capsular polysaccharide in transport-deficient recombinant Escherichia coli. FEMS Microbiol Lett 113:279–284PubMedCrossRefGoogle Scholar
  36. Brown JS, Gilliland SM, Holden DW (2001) A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. Mol Microbiol 40:572–585PubMedCrossRefGoogle Scholar
  37. Buchanan SK et al (1999) Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nat Struct Biol 6:56–63PubMedCrossRefGoogle Scholar
  38. Burkhard KA, Wilks A (2008) Functional characterization of the Shigella dysenteriae heme ABC transporter. Biochemistry 47:7977–7979PubMedCrossRefGoogle Scholar
  39. Butterton JR, Stoebner JA, Payne SM, Calderwood SB (1992) Cloning, sequencing, and transcriptional regulation of viuA, the gene encoding the ferric vibriobactin receptor of Vibrio cholerae. J Bacteriol 174:3729–3738PubMedGoogle Scholar
  40. Callegan MC, Engelbert M, Parke DW 2nd, Jett BD, Gilmore MS (2002) Bacterial endophthalmitis: epidemiology, therapeutics, and bacterium–host interactions. Clin Microbiol Rev 15:111–124PubMedCrossRefGoogle Scholar
  41. Campoy S, Jara M, Busquets N, Perez De Rozas AM, Badiola I, Barbe J (2002) Role of the high-affinity zinc uptake znuABC system in Salmonella enterica serovar Typhimurium virulence. Infect Immun 70:4721–4725PubMedCrossRefGoogle Scholar
  42. Cescau S, Cwerman H, Letoffe S, Delepelaire P, Wandersman C, Biville F (2007) Heme acquisition by hemophores. Biometals 20:603–613PubMedCrossRefGoogle Scholar
  43. Chabeaud P, de Groot A, Bitter W, Tommassen J, Heulin T, Achouak W (2001) Phase-variable expression of an operon encoding extracellular alkaline protease, a serine protease homolog, and lipase in Pseudomonas brassicacearum. J Bacteriol 183:2117–2120PubMedCrossRefGoogle Scholar
  44. Chami M, Steinfels E, Orelle C, Jault JM, Di Pietro A, Rigaud JL, Marco S (2002) Three-dimensional structure by cryo-electron microscopy of YvcC, an homodimeric ATP-binding cassette transporter from Bacillus subtilis. J Mol Biol 315:1075–1085PubMedCrossRefGoogle Scholar
  45. Chang YF, Young R, Struck DK (1989) Cloning and characterization of a hemolysin gene from Actinobacillus (Haemophilus) pleuropneumoniae. DNA 8:635–647PubMedCrossRefGoogle Scholar
  46. Chang YF, Ma DP, Young R, Struck DK (1993) Cloning, sequencing and expression of a Pasteurella haemolytica A1 gene encoding a PurK-like protein. DNA Seq 3:357–367PubMedGoogle Scholar
  47. Chen CY, Berish SA, Morse SA, Mietzner TA (1993) The ferric iron-binding protein of pathogenic Neisseria spp. functions as a periplasmic transport protein in iron acquisition from human transferrin. Mol Microbiol 10:311–318PubMedCrossRefGoogle Scholar
  48. Chen J, Lee EW, Kuroda T, Mizushima T, Tsuchiya T (2003a) Multidrug resistance in Serratia marcescens and cloning of genes responsible for the resistance. Biol Pharm Bull 26:391–393PubMedCrossRefGoogle Scholar
  49. Chen J, Lu G, Lin J, Davidson AL, Quiocho FA (2003b) A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. Mol Cell 12:651–661PubMedCrossRefGoogle Scholar
  50. Chen C, Malek AA, Wargo MJ, Hogan DA, Beattie GA (2010) The ATP-binding cassette transporter Cbc (choline/betaine/carnitine) recruits multiple substrate-binding proteins with strong specificity for distinct quaternary ammonium compounds. Mol Microbiol 75:29–45PubMedCrossRefGoogle Scholar
  51. Chenault SS, Earhart CF (1991) Organization of genes encoding membrane proteins of the Escherichia coli ferrienterobactin permease. Mol Microbiol 5:1405–1413PubMedCrossRefGoogle Scholar
  52. Chimento DP, Mohanty AK, Kadner RJ, Wiener MC (2003) Substrate-induced transmembrane signaling in the cobalamin transporter BtuB. Nat Struct Biol 10:394–401PubMedCrossRefGoogle Scholar
  53. Clarke BR, Cuthbertson L, Whitfield C (2004) Nonreducing terminal modifications determine the chain length of polymannose O antigens of Escherichia coli and couple chain termination to polymer export via an ATP-binding cassette transporter. J Biol Chem 279:35709–35718PubMedCrossRefGoogle Scholar
  54. Claverys JP (2001) A new family of high-affinity ABC manganese and zinc permeases. Res Microbiol 152:231–243PubMedCrossRefGoogle Scholar
  55. Clinkenbeard KD, Thiessen AE (1991) Mechanism of action of Moraxella bovis hemolysin. Infect Immun 59:1148–1152PubMedGoogle Scholar
  56. Cockayne A, Hill PJ, Powell NB, Bishop K, Sims C, Williams P (1998) Molecular cloning of a 32-kilodalton lipoprotein component of a novel iron-regulated Staphylococcus epidermidis ABC transporter. Infect Immun 66:3767–3774PubMedGoogle Scholar
  57. Coleman JE (1998) Zinc enzymes. Curr Opin Chem Biol 2:222–234PubMedCrossRefGoogle Scholar
  58. Colicchio R et al (2009) The meningococcal ABC-Type l-glutamate transporter GltT is necessary for the development of experimental meningitis in mice. Infect Immun 77:3578–3587PubMedCrossRefGoogle Scholar
  59. Cuthbertson L, Powers J, Whitfield C (2005) The C-terminal domain of the nucleotide-binding domain protein Wzt determines substrate specificity in the ATP-binding cassette transporter for the lipopolysaccharide O-antigens in Escherichia coli serotypes O8 and O9a. J Biol Chem 280:30310–30319PubMedCrossRefGoogle Scholar
  60. Cuthbertson L, Mainprize IL, Naismith JH, Whitfield C (2009) Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in gram-negative bacteria. Microbiol Mol Biol Rev 73:155–177PubMedCrossRefGoogle Scholar
  61. Cuthbertson L, Kos V, Whitfield C (2010) ABC transporters involved in export of cell surface glycoconjugates. Microbiol Mol Biol Rev 74:341–362PubMedCrossRefGoogle Scholar
  62. Dale SE, Sebulsky MT, Heinrichs DE (2004) Involvement of SirABC in iron-siderophore import in Staphylococcus aureus. J Bacteriol 186:8356–8362PubMedCrossRefGoogle Scholar
  63. Dalmas O, Orelle C, Foucher AE, Geourjon C, Crouzy S, Di Pietro A, Jault JM (2005) The Q-loop disengages from the first intracellular loop during the catalytic cycle of the multidrug ABC transporter BmrA. J Biol Chem 280:36857–36864PubMedCrossRefGoogle Scholar
  64. Dassa E, Bouige P (2001) The ABC of ABCS: a phylogenetic and functional classification of ABC systems in living organisms. Res Microbiol 152:211–229PubMedCrossRefGoogle Scholar
  65. Davidson AL, Laghaeian SS, Mannering DE (1996) The maltose transport system of Escherichia coli displays positive cooperativity in ATP hydrolysis. J Biol Chem 271:4858–4863PubMedCrossRefGoogle Scholar
  66. Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72:317–364PubMedCrossRefGoogle Scholar
  67. Dawson RJ, Locher KP (2006) Structure of a bacterial multidrug ABC transporter. Nature 443:180–185PubMedCrossRefGoogle Scholar
  68. Dawson RJ, Locher KP (2007) Structure of the multidrug ABC transporter Sav 1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett 581:935–938PubMedCrossRefGoogle Scholar
  69. Dawson RJ, Hollenstein K, Locher KP (2007) Uptake or extrusion: crystal structures of full ABC transporters suggest a common mechanism. Mol Microbiol 65:250–257PubMedCrossRefGoogle Scholar
  70. de Veaux LC, Clevenson DS, Bradbeer C, Kadner RJ (1986) Identification of the btuCED polypeptides and evidence for their role in vitamin B12 transport in Escherichia coli. J Bacteriol 167:920–927PubMedGoogle Scholar
  71. De Vos D, De Chial M, Cochez C, Jansen S, Tummler B, Meyer JM, Cornelis P (2001) Study of pyoverdine type and production by Pseudomonas aeruginosa isolated from cystic fibrosis patients: prevalence of type II pyoverdine isolates and accumulation of pyoverdine-negative mutations. Arch Microbiol 175:384–388PubMedCrossRefGoogle Scholar
  72. Debarbieux L, Wandersman C (2001) Folded HasA inhibits its own secretion through its ABC exporter. EMBO J 20:4657–4663PubMedCrossRefGoogle Scholar
  73. Delepelaire P, Wandersman C (1998) The SecB chaperone is involved in the secretion of the Serratia marcescens HasA protein through an ABC transporter. EMBO J 17:936–944PubMedCrossRefGoogle Scholar
  74. Detmers FJ, Lanfermeijer FC, Poolman B (2001) Peptides and ATP binding cassette peptide transporters. Res Microbiol 152:245–258PubMedCrossRefGoogle Scholar
  75. Dintilhac A, Alloing G, Granadel C, Claverys JP (1997) Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol Microbiol 25:727–739PubMedCrossRefGoogle Scholar
  76. Doerrler WT, Reedy MC, Raetz CR (2001) An Escherichia coli mutant defective in lipid export. J Biol Chem 276:11461–11464PubMedCrossRefGoogle Scholar
  77. Doerrler WT, Gibbons HS, Raetz CR (2004) MsbA-dependent translocation of lipids across the inner membrane of Escherichia coli. J Biol Chem 279:45102–45109PubMedCrossRefGoogle Scholar
  78. Doeven MK, Kok J, Poolman B (2005) Specificity and selectivity determinants of peptide transport in Lactococcus lactis and other microorganisms. Mol Microbiol 57:640–649PubMedCrossRefGoogle Scholar
  79. Duong F, Lazdunski A, Cami B, Murgier M (1992) Sequence of a cluster of genes controlling synthesis and secretion of alkaline protease in Pseudomonas aeruginosa: relationships to other secretory pathways. Gene 121:47–54PubMedCrossRefGoogle Scholar
  80. Eitinger T, Rodionov DA, Grote M, Schneider E (2011) Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol Rev 35:3–67PubMedCrossRefGoogle Scholar
  81. Espinasse S, Gohar M, Lereclus D, Sanchis V (2002) An ABC transporter from Bacillus thuringiensis is essential for beta-exotoxin I production. J Bacteriol 184:5848–5854PubMedCrossRefGoogle Scholar
  82. Eswarappa SM, Panguluri KK, Hensel M, Chakravortty D (2008) The yejABEF operon of Salmonella confers resistance to antimicrobial peptides and contributes to its virulence. Microbiology 154:666–678PubMedCrossRefGoogle Scholar
  83. Faraldo-Gomez JD, Sansom MS (2003) Acquisition of siderophores in gram-negative bacteria. Nat Rev Mol Cell Biol 4:105–116PubMedCrossRefGoogle Scholar
  84. Fetherston JD, Bertolino VJ, Perry RD (1999) YbtP and YbtQ: two ABC transporters required for iron uptake in Yersinia pestis. Mol Microbiol 32:289–299PubMedCrossRefGoogle Scholar
  85. Fetzer AE, Werner AS, Hagstrom JW (1967) Pathologic features of pseudomonal pneumonia. Am Rev Respir Dis 96:1121–1130PubMedGoogle Scholar
  86. Frey J, Meier R, Gygi D, Nicolet J (1991) Nucleotide sequence of the hemolysin I gene from Actinobacillus pleuropneumoniae. Infect Immun 59:3026–3032PubMedGoogle Scholar
  87. Fronzes R, Christie PJ, Waksman G (2009) The structural biology of type IV secretion systems. Nat Rev Microbiol 7:703–714PubMedCrossRefGoogle Scholar
  88. Frosch M, Edwards U, Bousset K, Krausse B, Weisgerber C (1991) Evidence for a common molecular origin of the capsule gene loci in gram-negative bacteria expressing group II capsular polysaccharides. Mol Microbiol 5:1251–1263PubMedCrossRefGoogle Scholar
  89. Fuellen G, Spitzer M, Cullen P, Lorkowski S (2005) Correspondence of function and phylogeny of ABC proteins based on an automated analysis of 20 model protein data sets. Proteins 61:888–899PubMedCrossRefGoogle Scholar
  90. Gabbianelli R, Scotti R, Ammendola S, Petrarca P, Nicolini L, Battistoni A (2011) Role of ZnuABC and ZinT in Escherichia coli O157:H7 zinc acquisition and interaction with epithelial cells. BMC Microbiol 11:36PubMedCrossRefGoogle Scholar
  91. Garsin DA et al (2001) A simple model host for identifying Gram-positive virulence factors. Proc Natl Acad Sci U S A 98:10892–10897PubMedCrossRefGoogle Scholar
  92. Ghanei H, Abeyrathne PD, Lam JS (2007) Biochemical characterization of MsbA from Pseudomonas aeruginosa. J Biol Chem 282:26939–26947PubMedCrossRefGoogle Scholar
  93. Gilmore MS, Segarra RA, Booth MC (1990) An HlyB-type function is required for expression of the Enterococcus faecalis hemolysin/bacteriocin. Infect Immun 58:3914–3923PubMedGoogle Scholar
  94. Glaser P, Ladant D, Sezer O, Pichot F, Ullmann A, Danchin A (1988) The calmodulin-sensitive adenylate cyclase of Bordetella pertussis: cloning and expression in Escherichia coli. Mol Microbiol 2:19–30PubMedCrossRefGoogle Scholar
  95. Glaser P et al (2001) Comparative genomics of Listeria species. Science 294:849–852PubMedGoogle Scholar
  96. Goebel W, Hedgpeth J (1982) Cloning and functional characterization of the plasmid-encoded hemolysin determinant of Escherichia coli. J Bacteriol 151:1290–1298PubMedGoogle Scholar
  97. Gotz F (2002) Staphylococcus and biofilms. Mol Microbiol 43:1367–1378PubMedCrossRefGoogle Scholar
  98. Greenwald J, Hoegy F, Nader M, Journet L, Mislin GL, Graumann PL, Schalk IJ (2007) Real time fluorescent resonance energy transfer visualization of ferric pyoverdine uptake in Pseudomonas aeruginosa. A role for ferrous iron. J Biol Chem 282:2987–2995PubMedCrossRefGoogle Scholar
  99. Greller G, Horlacher R, DiRuggiero J, Boos W (1999) Molecular and biochemical analysis of MalK, the ATP-hydrolyzing subunit of the trehalose/maltose transport system of the hyperthermophilic archaeon Thermococcus litoralis. J Biol Chem 274:20259–20264PubMedCrossRefGoogle Scholar
  100. Griffin AS, West SA, Buckling A (2004) Cooperation and competition in pathogenic bacteria. Nature 430:1024–1027PubMedCrossRefGoogle Scholar
  101. Grigg JC, Vermeiren CL, Heinrichs DE, Murphy ME (2007) Heme coordination by Staphylococcus aureus IsdE. J Biol Chem 282:28815–28822PubMedCrossRefGoogle Scholar
  102. Groisman EA (1994) How bacteria resist killing by host-defense peptides. Trends in microbiology 2:444–449PubMedCrossRefGoogle Scholar
  103. Groisman EA, Parra-Lopez C, Salcedo M, Lipps CJ, Heffron F (1992) Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proc Natl Acad Sci U S A 89:11939–11943PubMedCrossRefGoogle Scholar
  104. Guilfoile PG, Hutchinson CR (1991) A bacterial analog of the mdr gene of mammalian tumor cells is present in Streptomyces peucetius, the producer of daunorubicin and doxorubicin. Proc Natl Acad Sci U S A 88:8553–8557PubMedCrossRefGoogle Scholar
  105. Gunasekera TS, Herre AH, Crowder MW (2009) Absence of ZnuABC-mediated zinc uptake affects virulence-associated phenotypes of uropathogenic Escherichia coli CFT073 under Zn(II)-depleted conditions. FEMS Microbiol Lett 300:36–41PubMedCrossRefGoogle Scholar
  106. Guzzo J, Murgier M, Filloux A, Lazdunski A (1990) Cloning of the Pseudomonas aeruginosa alkaline protease gene and secretion of the protease into the medium by Escherichia coli. J Bacteriol 172:942–948PubMedGoogle Scholar
  107. Hanks TS, Liu M, McClure MJ, Lei B (2005) ABC transporter FtsABCD of Streptococcus pyogenes mediates uptake of ferric ferrichrome. BMC Microbiol 5:62PubMedCrossRefGoogle Scholar
  108. Hartel T, Klein M, Koedel U, Rohde M, Petruschka L, Hammerschmidt S (2011) Impact of glutamine transporters on pneumococcal fitness under infection-related conditions. Infect Immun 79:44–58PubMedCrossRefGoogle Scholar
  109. Hashimoto Y, Li N, Yokoyama H, Ezaki T (1993) Complete nucleotide sequence and molecular characterization of ViaB region encoding Vi antigen in Salmonella Typhimurium. J Bacteriol 175:4456–4465PubMedGoogle Scholar
  110. Heck LW, Morihara K, Abrahamson DR (1986) Degradation of soluble laminin and depletion of tissue-associated basement membrane laminin by Pseudomonas aeruginosa elastase and alkaline protease. Infect Immun 54:149–153PubMedGoogle Scholar
  111. Hejazi A, Falkiner FR (1997) Serratia marcescens. J Med Microbiol 46:903–912PubMedCrossRefGoogle Scholar
  112. Henderson DP, Payne SM (1993) Cloning and characterization of the Vibrio cholerae genes encoding the utilization of iron from haemin and haemoglobin. Mol Microbiol 7:461–469PubMedCrossRefGoogle Scholar
  113. Henderson DP, Payne SM (1994) Vibrio cholerae iron transport systems: roles of heme and siderophore iron transport in virulence and identification of a gene associated with multiple iron transport systems. Infect Immun 62:5120–5125PubMedGoogle Scholar
  114. Hess J, Wels W, Vogel M, Goebel W (1986) Nucleotide sequence of a plasmid-encoded haemolysin determinant and its comparison with a corresponding chromosomal haemolysin sequence. FEMS Microbiol Lett 34:1–11Google Scholar
  115. Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113PubMedCrossRefGoogle Scholar
  116. Higgins MK, Bokma E, Koronakis E, Hughes C, Koronakis V (2004) Structure of the periplasmic component of a bacterial drug efflux pump. Proc Natl Acad Sci U S A 101:9994–9999PubMedCrossRefGoogle Scholar
  117. Hille M, Kies S, Gotz F, Peschel A (2001) Dual role of GdmH in producer immunity and secretion of the Staphylococcal antibiotics gallidermin and epidermin. Appl Environ Microbiol 67:1380–1383PubMedCrossRefGoogle Scholar
  118. Holland IB, Kenny B, Blight M (1990) Hemolysin secretion from Escherichia coli. Biochimie 72:131–141PubMedCrossRefGoogle Scholar
  119. Hollenstein K, Dawson RJP, Locher KP (2007a) Structure and mechanism of ABC transporter proteins. Curr Opin Struct Biol 17:412–418PubMedCrossRefGoogle Scholar
  120. Hollenstein K, Frei DC, Locher KP (2007b) Structure of an ABC transporter in complex with its binding protein. Nature 446:213–216PubMedCrossRefGoogle Scholar
  121. Hong YQ, Ghebrehiwet B (1992) Effect of Pseudomonas aeruginosa elastase and alkaline protease on serum complement and isolated components C1q and C3. Clin Immunol Immunopathol 62:133–138PubMedCrossRefGoogle Scholar
  122. Hooper NM (1994) Families of zinc metalloproteases. FEBS Lett 354:1–6PubMedCrossRefGoogle Scholar
  123. Hopfner KP, Tainer JA (2003) Rad50/SMC proteins and ABC transporters: unifying concepts from high-resolution structures. Curr Opin Struct Biol 13:249–255PubMedCrossRefGoogle Scholar
  124. Hopfner KP, Karcher A, Shin DS, Craig L, Arthur LM, Carney JP, Tainer JA (2000) Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 101:789–800PubMedCrossRefGoogle Scholar
  125. Horn C, Bremer E, Schmitt L (2005) Functional overexpression and in vitro re-association of OpuA, an osmotically regulated ABC-transport complex from Bacillus subtilis. FEBS Lett 579:5765–5768PubMedCrossRefGoogle Scholar
  126. Horn C, Sohn-Bosser L, Breed J, Welte W, Schmitt L, Bremer E (2006) Molecular determinants for substrate specificity of the ligand-binding protein OpuAC from Bacillus subtilis for the compatible solutes glycine betaine and proline betaine. J Mol Biol 357:592–606PubMedCrossRefGoogle Scholar
  127. Horsburgh MJ, Wharton SJ, Cox AG, Ingham E, Peacock S, Foster SJ (2002) MntR modulates expression of the PerR regulon and superoxide resistance in Staphylococcus aureus through control of manganese uptake. Mol Microbiol 44:1269–1286PubMedCrossRefGoogle Scholar
  128. Horvat RT, Parmely MJ (1988) Pseudomonas aeruginosa alkaline protease degrades human gamma interferon and inhibits its bioactivity. Infect Immun 56:2925–2932PubMedGoogle Scholar
  129. Huang X, Yan A, Zhang X, Xu Y (2006) Identification and characterization of a putative ABC transporter PltHIJKN required for pyoluteorin production in Pseudomonas sp. M18. Gene 376:68–78PubMedCrossRefGoogle Scholar
  130. Hung LW, Wang IX, Nikaido K, Liu PQ, Ames GF, Kim SH (1998) Crystal structure of the ATP-binding subunit of an ABC transporter. Nature 396:703–707PubMedCrossRefGoogle Scholar
  131. Hussain M, Heilmann C, Peters G, Herrmann M (2001) Teichoic acid enhances adhesion of Staphylococcus epidermidis to immobilized fibronectin. Microb Pathog 31:261–270PubMedCrossRefGoogle Scholar
  132. Huycke MM, Spiegel CA, Gilmore MS (1991) Bacteremia caused by hemolytic, high-level gentamicin-resistant Enterococcus faecalis. Antimicrob Agents Chemother 35:1626–1634PubMedCrossRefGoogle Scholar
  133. Hvorup RN, Goetz BA, Niederer M, Hollenstein K, Perozo E, Locher KP (2007) Asymmetry in the structure of the ABC transporter-binding protein complex BtuCD–BtuF. Science 317:1387–1390PubMedCrossRefGoogle Scholar
  134. Hyink O, Wescombe PA, Upton M, Ragland N, Burton JP, Tagg JR (2007) Salivaricin A2 and the novel lantibiotic salivaricin B are encoded at adjacent loci on a 190-kilobase transmissible megaplasmid in the oral probiotic strain Streptococcus salivarius K12. Appl Environ Microbiol 73:1107–1113PubMedCrossRefGoogle Scholar
  135. Ike Y, Hashimoto H, Clewell DB (1984) Hemolysin of Streptococcus faecalis subspecies zymogenes contributes to virulence in mice. Infect Immun 45:528–530PubMedGoogle Scholar
  136. Ike Y, Hashimoto H, Clewell DB (1987) High incidence of hemolysin production by Enterococcus (Streptococcus) faecalis strains associated with human parenteral infections. J Clin Microbiol 25:1524–1528PubMedGoogle Scholar
  137. Ikeno S, Yamane Y, Ohishi Y, Kinoshita N, Hamada M, Tsuchiya KS, Hori M (2000) ABC transporter genes, kasKLM, responsible for self-resistance of a kasugamycin producer strain. J Antibiot (Tokyo) 53:373–384CrossRefGoogle Scholar
  138. Imperi F, Tiburzi F, Visca P (2009) Molecular basis of pyoverdine siderophore recycling in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 106:20440–20445PubMedCrossRefGoogle Scholar
  139. Janakiraman A, Slauch JM (2000) The putative iron transport system SitABCD encoded on SPI1 is required for full virulence of Salmonella Typhimurium. Mol Microbiol 35:1146–1155PubMedCrossRefGoogle Scholar
  140. Jansen R, Briaire J, Kamp EM, Gielkens AL, Smits MA (1993) Cloning and characterization of the Actinobacillus pleuropneumoniae-RTX-toxin III (ApxIII) gene. Infect Immun 61:947–954PubMedGoogle Scholar
  141. Jenkinson HF (1994) Cell surface protein receptors in oral streptococci. FEMS Microbiol Lett 121:133–140PubMedCrossRefGoogle Scholar
  142. Johnson JM, Church GM (1999) Alignment and structure prediction of divergent protein families: periplasmic and outer membrane proteins of bacterial efflux pumps. J Mol Biol 287:695–715PubMedCrossRefGoogle Scholar
  143. Jones PM, George AM (1999) Subunit interactions in ABC transporters: towards a functional architecture. FEMS Microbiol Lett 179:187–202PubMedCrossRefGoogle Scholar
  144. Jones PM, George AM (2004) The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci 61:682–699PubMedCrossRefGoogle Scholar
  145. Kalscheuer R, Weinrick B, Veeraraghavan U, Besra GS, Jacobs WR Jr (2010) Trehalose-recycling ABC transporter LpqY–SugA–SugB–SugC is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 107:21761–21766PubMedCrossRefGoogle Scholar
  146. Kauffmann F (1947) The serology of the coli group. J Immunol 57:71–100PubMedGoogle Scholar
  147. Kehres DG, Janakiraman A, Slauch JM, Maguire ME (2002) SitABCD is the alkaline Mn(2+) transporter of Salmonella enterica serovar Typhimurium. J Bacteriol 184:3159–3166PubMedCrossRefGoogle Scholar
  148. Keo T, Collins J, Kunwar P, Blaser MJ, Iovine NM (2011) Campylobacter capsule and lipooligosaccharide confer resistance to serum and cationic antimicrobials. Virulence 2:30–40PubMedCrossRefGoogle Scholar
  149. Kerr ID (2002) Structure and association of ATP-binding cassette transporter nucleotide-binding domains. Biochim Biophys Acta 1561:47–64PubMedCrossRefGoogle Scholar
  150. Kiran MD, Akiyoshi DE, Giacometti A, Cirioni O, Scalise G, Balaban N (2009) OpuC--an ABC transporter that is associated with Staphylococcus aureus pathogenesis. Int J Artif Organs 32:600–610.Google Scholar
  151. Kitten T, Munro CL, Michalek SM, Macrina FL (2000) Genetic characterization of a Streptococcus mutans LraI family operon and role in virulence. Infect Immun 68:4441–4451PubMedCrossRefGoogle Scholar
  152. Klein C, Entian KD (1994) Genes involved in self-protection against the lantibiotic subtilin produced by Bacillus subtilis ATCC 6633. Appl Environ Microbiol 60:2793–2801PubMedGoogle Scholar
  153. Knapp S, Hacker J, Jarchau T, Goebel W (1986) Large, unstable inserts in the chromosome affect virulence properties of uropathogenic Escherichia coli O6 strain 536. J Bacteriol 168:22–30PubMedGoogle Scholar
  154. Kolenbrander PE, Andersen RN, Baker RA, Jenkinson HF (1998) The adhesion-associated sca operon in Streptococcus gordonii encodes an inducible high-affinity ABC transporter for Mn2+ uptake. J Bacteriol 180:290–295PubMedGoogle Scholar
  155. Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C (2000) Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405:914–919PubMedCrossRefGoogle Scholar
  156. Kroll JS, Loynds B, Brophy LN, Moxon ER (1990) The bex locus in encapsulated Haemophilus influenzae: a chromosomal region involved in capsule polysaccharide export. Mol Microbiol 4:1853–1862PubMedCrossRefGoogle Scholar
  157. Kroncke KD, Boulnois G, Roberts I, Bitter-Suermann D, Golecki JR, Jann B, Jann K (1990a) Expression of the Escherichia coli K5 capsular antigen: immunoelectron microscopic and biochemical studies with recombinant E. coli. J Bacteriol 172:1085–1091PubMedGoogle Scholar
  158. Kroncke KD, Orskov I, Orskov F, Jann B, Jann K (1990b) Electron microscopic study of coexpression of adhesive protein capsules and polysaccharide capsules in Escherichia coli. Infect Immun 58:2710–2714PubMedGoogle Scholar
  159. LaGier MJ, Threadgill DS (2008) Identification of novel genes in the oral pathogen Campylobacter rectus. Oral Microbiol Immunol 23:406–412PubMedCrossRefGoogle Scholar
  160. Lawrence MC, Pilling PA, Epa VC, Berry AM, Ogunniyi AD, Paton JC (1998) The crystal structure of pneumococcal surface antigen PsaA reveals a metal-binding site and a novel structure for a putative ABC-type binding protein. Structure 6:1553–1561PubMedCrossRefGoogle Scholar
  161. Lazarevic V, Karamata D (1995) The tagGH operon of Bacillus subtilis 168 encodes a two-component ABC transporter involved in the metabolism of two wall teichoic acids. Mol Microbiol 16:345–355PubMedCrossRefGoogle Scholar
  162. Lee EW, Huda MN, Kuroda T, Mizushima T, Tsuchiya T (2003) EfrAB, an ABC multidrug efflux pump in Enterococcus faecalis. Antimicrob Agents Chemother 47:3733–3738PubMedCrossRefGoogle Scholar
  163. Lei B, Liu M, Voyich JM, Prater CI, Kala SV, DeLeo FR, Musser JM (2003) Identification and characterization of HtsA, a second heme-binding protein made by Streptococcus pyogenes. Infect Immun 71:5962–5969PubMedCrossRefGoogle Scholar
  164. Letoffe S, Ghigo JM, Wandersman C (1994a) Iron acquisition from heme and hemoglobin by a Serratia marcescens extracellular protein. Proc Natl Acad Sci U S A 91:9876–9880PubMedCrossRefGoogle Scholar
  165. Letoffe S, Ghigo JM, Wandersman C (1994b) Secretion of the Serratia marcescens HasA protein by an ABC transporter. J Bacteriol 176:5372–5377PubMedGoogle Scholar
  166. Liao CH, McCallus DE (1998) Biochemical and genetic characterization of an extracellular protease from Pseudomonas fluorescens CY091. Appl Environ Microbiol 64:914–921PubMedGoogle Scholar
  167. Lim KH et al (2008) Metal binding specificity of the MntABC permease of Neisseria gonorrhoeae and its influence on bacterial growth and interaction with cervical epithelial cells. Infect Immun 76:3569–3576PubMedCrossRefGoogle Scholar
  168. Lin W et al (1999) Identification of a Vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. Proc Natl Acad Sci U S A 96:1071–1076PubMedCrossRefGoogle Scholar
  169. Linhartova I et al (2010) RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev 34:1076–1112PubMedGoogle Scholar
  170. Liu CE, Liu PQ, Ames GF (1997) Characterization of the adenosine triphosphatase activity of the periplasmic histidine permease, a traffic ATPase (ABC transporter). J Biol Chem 272:21883–21891PubMedCrossRefGoogle Scholar
  171. Locher KP (2009) Review. Structure and mechanism of ATP-binding cassette transporters. Philos Trans R Soc Lond B Biol Sci 364:239–245PubMedCrossRefGoogle Scholar
  172. Locher KP, Lee AT, Rees DC (2002) The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296:1091–1098PubMedCrossRefGoogle Scholar
  173. Loisel E et al (2008) AdcAII, a new pneumococcal Zn-binding protein homologous with ABC transporters: biochemical and structural analysis. J Mol Biol 381:594–606PubMedCrossRefGoogle Scholar
  174. Loomes LM, Kerr MA, Senior BW (1993) The cleavage of immunoglobulin G in vitro and in vivo by a proteinase secreted by the urinary tract pathogen Proteus mirabilis. J Med Microbiol 39:225–232PubMedCrossRefGoogle Scholar
  175. Lu G, Westbrooks JM, Davidson AL, Chen J (2005) ATP hydrolysis is required to reset the ATP-binding cassette dimer into the resting-state conformation. Proc Natl Acad Sci U S A 102:17969–17974PubMedCrossRefGoogle Scholar
  176. Lubelski J, Mazurkiewicz P, van Merkerk R, Konings WN, Driessen AJ (2004) ydaG and ydbA of Lactococcus lactis encode a heterodimeric ATP-binding cassette-type multidrug transporter. J Biol Chem 279:34449–34455PubMedCrossRefGoogle Scholar
  177. Lubelski J, de Jong A, van Merkerk R, Agustiandari H, Kuipers OP, Kok J, Driessen AJ (2006a) LmrCD is a major multidrug resistance transporter in Lactococcus lactis. Mol Microbiol 61:771–781PubMedCrossRefGoogle Scholar
  178. Lubelski J, van Merkerk R, Konings WN, Driessen AJ (2006b) Nucleotide-binding sites of the heterodimeric LmrCD ABC-multidrug transporter of Lactococcus lactis are asymmetric. Biochemistry 45:648–656PubMedCrossRefGoogle Scholar
  179. Ludwig, A, and Goebel, W (1999) The family of the multigenic encoded RTX toxin. In: JE Alouf, and JH Freer (eds) The comprehensive sourcebook of bacterial protein toxins. Academic, London, pp 330–348Google Scholar
  180. Mackedonski VV, Nikolaev N, Sebesta K, Hadjiolov AA (1972) Inhibition of ribonucleic acid biosynthesis in mice liver by the exotoxin of Bacillus thuringiensis. Biochim Biophys Acta 272:56–66PubMedCrossRefGoogle Scholar
  181. Maier E, Reinhard N, Benz R, Frey J (1996) Channel-forming activity and channel size of the RTX toxins ApxI, ApxII, and ApxIII of Actinobacillus pleuropneumoniae. Infect Immun 64:4415–4423PubMedGoogle Scholar
  182. Mason KM, Bruggeman ME, Munson RS, Bakaletz LO (2006) The non-typeable Haemophilus influenzae Sap transporter provides a mechanism of antimicrobial peptide resistance and SapD-dependent potassium acquisition. Mol Microbiol 62:1357–1372PubMedCrossRefGoogle Scholar
  183. Massonet C, Pintens V, Merckx R, Anne J, Lammertyn E, Van Eldere J (2006) Effect of iron on the expression of sirR and sitABC in biofilm-associated Staphylococcus epidermidis. BMC Microbiol 6:103PubMedCrossRefGoogle Scholar
  184. Matsumoto-Nakano M, Kuramitsu HK (2006) Role of bacteriocin immunity proteins in the antimicrobial sensitivity of Streptococcus mutans. J Bacteriol 188:8095–8102PubMedCrossRefGoogle Scholar
  185. Matsuo T, Chen J, Minato Y, Ogawa W, Mizushima T, Kuroda T, Tsuchiya T (2008) SmdAB, a heterodimeric ABC-Type multidrug efflux pump, in Serratia marcescens. J Bacteriol 190:648–654PubMedCrossRefGoogle Scholar
  186. McAllister LJ, Tseng HJ, Ogunniyi AD, Jennings MP, McEwan AG, Paton JC (2004) Molecular analysis of the psa permease complex of Streptococcus pneumoniae. Mol Microbiol 53:889–901PubMedCrossRefGoogle Scholar
  187. McDevitt CA, Ogunniyi AD, Valkov E, Lawrence MC, Kobe B, McEwan AG, Paton JC (2011) A molecular mechanism for bacterial susceptibility to zinc. PLoS Pathog 7:e1002357PubMedCrossRefGoogle Scholar
  188. McNulty C, Thompson J, Barrett B, Lord L, Andersen C, Roberts IS (2006) The cell surface expression of group 2 capsular polysaccharides in Escherichia coli: the role of KpsD, RhsA and a multi-protein complex at the pole of the cell. Mol Microbiol 59:907–922PubMedCrossRefGoogle Scholar
  189. Mendez C, Salas JA (2001) The role of ABC transporters in antibiotic-producing organisms: drug secretion and resistance mechanisms. Res Microbiol 152:341–350PubMedCrossRefGoogle Scholar
  190. Menendez N, Brana AF, Salas JA, Mendez C (2007) Involvement of a chromomycin ABC transporter system in secretion of a deacetylated precursor during chromomycin biosynthesis. Microbiology 153:3061–3070PubMedCrossRefGoogle Scholar
  191. Menestrina G, Moser C, Pellet S, Welch R (1994) Pore-formation by Escherichia coli hemolysin (HlyA) and other members of the RTX toxins family. Toxicology 87:249–267PubMedCrossRefGoogle Scholar
  192. Menestrina G, Dalla Serra M, Pederzolli C, Bregante M, Gambale F (1995a) Bacterial hemolysins and leukotoxins affect target cells by forming large exogenous pores into their plasma membrane: Escherichia coli hemolysin A as a case example. Biosci Rep 15:543–551PubMedCrossRefGoogle Scholar
  193. Menestrina G, Ropele M, Dalla Serra M, Pederzolli C, Hugo F, Pellet S, Welch RA (1995b) Binding of antibodies to functional epitopes on the pore formed by Escherichia coli hemolysin in cells and model membranes. Biochim Biophys Acta 1238:72–80PubMedCrossRefGoogle Scholar
  194. Meyer C et al (1995) Nucleotide sequence of the lantibiotic Pep5 biosynthetic gene cluster and functional analysis of PepP and PepC. Evidence for a role of PepC in thioether formation. Eur J Biochem 232:478–489PubMedCrossRefGoogle Scholar
  195. Miyamoto M, Maeda H, Kitanaka M, Kokeguchi S, Takashiba S, Murayama Y (1998) The S-layer protein from Campylobacter rectus: sequence determination and function of the recombinant protein. FEMS Microbiol Lett 166:275–281PubMedCrossRefGoogle Scholar
  196. Miyoshi S, Shinoda S (2000) Microbial metalloproteases and pathogenesis. Microbes Infect 2:91–98PubMedCrossRefGoogle Scholar
  197. Moeck GS, Coulton JW (1998) TonB-dependent iron acquisition: mechanisms of siderophore-mediated active transport. Mol Microbiol 28:675–681PubMedCrossRefGoogle Scholar
  198. Moody JE, Thomas PJ (2005) Nucleotide binding domain interactions during the mechanochemical reaction cycle of ATP-binding cassette transporters. J Bioenerg Biomembr 37:475–479PubMedCrossRefGoogle Scholar
  199. Morrissey JA, Cockayne A, Hill PJ, Williams P (2000) Molecular cloning and analysis of a putative siderophore ABC transporter from Staphylococcus aureus. Infect Immun 68:6281–6288PubMedCrossRefGoogle Scholar
  200. Moxon ER, Vaughn KA (1981) The type b capsular polysaccharide as a virulence determinant of Haemophilus influenzae: studies using clinical isolates and laboratory transformants. J Infect Dis 143:517–524PubMedCrossRefGoogle Scholar
  201. Netz DJ, Sahl HG, Marcelino R, dos Santos Nascimento J, de Oliveira SS, Soares MB, do Carmo deFreire Bastos M (2001) Molecular characterisation of aureocin A70, a multi-peptide bacteriocin isolated from Staphylococcus aureus. J Mol Biol 311:939–949PubMedCrossRefGoogle Scholar
  202. Novikova M, Metlitskaya A, Datsenko K, Kazakov T, Kazakov A, Wanner B, Severinov K (2007) The Escherichia coli Yej transporter is required for the uptake of translation inhibitor microcin C. J Bacteriol 189:8361–8365PubMedCrossRefGoogle Scholar
  203. Nygaard TK et al (2006) The mechanism of direct heme transfer from the streptococcal cell surface protein Shp to HtsA of the HtsABC transporter. J Biol Chem 281:20761–20771PubMedCrossRefGoogle Scholar
  204. Occhino DA, Wyckoff EE, Henderson DP, Wrona TJ, Payne SM (1998) Vibrio cholerae iron transport: haem transport genes are linked to one of two sets of tonB, exbB, exbD genes. Mol Microbiol 29:1493–1507PubMedCrossRefGoogle Scholar
  205. Ochsner UA, Johnson Z, Vasil ML (2000) Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa. Microbiology 146:185–198PubMedGoogle Scholar
  206. Okuda K et al (1997) Role for the S-layer of Campylobacter rectus ATCC33238 in complement mediated killing and phagocytic killing by leukocytes from guinea pig and human peripheral blood. Oral Dis 3:113–120PubMedCrossRefGoogle Scholar
  207. Olano C, Rodriguez AM, Mendez C, Salas JA (1995) A second ABC transporter is involved in oleandomycin resistance and its secretion by Streptomyces antibioticus. Mol Microbiol 16:333–343PubMedCrossRefGoogle Scholar
  208. Oldham ML, Khare D, Quiocho FA, Davidson AL, Chen J (2007) Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450:515–521PubMedCrossRefGoogle Scholar
  209. Otto M (2009) Bacterial sensing of antimicrobial peptides. Contrib Microbiol 16:136–149PubMedCrossRefGoogle Scholar
  210. Otto M, Gotz F (2001) ABC transporters of staphylococci. Res Microbiol 152:351–356PubMedCrossRefGoogle Scholar
  211. Paik S, Brown A, Munro CL, Cornelissen CN, Kitten T (2003) The sloABCR operon of Streptococcus mutans encodes an Mn and Fe transport system required for endocarditis virulence and its Mn-dependent repressor. J Bacteriol 185:5967–5975PubMedCrossRefGoogle Scholar
  212. Papadelli M, Karsioti A, Anastasiou R, Georgalaki M, Tsakalidou E (2007) Characterization of the gene cluster involved in the biosynthesis of macedocin, the lantibiotic produced by Streptococcus macedonicus. FEMS Microbiol Lett 272:75–82PubMedCrossRefGoogle Scholar
  213. Papp-Wallace KM, Maguire ME (2006) Manganese transport and the role of manganese in virulence. Annu Rev Microbiol 60:187–209PubMedCrossRefGoogle Scholar
  214. Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458:1191–1195PubMedCrossRefGoogle Scholar
  215. Parra-Lopez C, Baer MT, Groisman EA (1993) Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella Typhimurium. EMBO J 12:4053–4062PubMedGoogle Scholar
  216. Paulsen IT, Park JH, Choi PS, Saier MH Jr (1997) A family of gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from gram-negative bacteria. FEMS Microbiol Lett 156:1–8PubMedCrossRefGoogle Scholar
  217. Pavelka MS Jr, Wright LF, Silver RP (1991) Identification of two genes, kpsM and kpsT, in region 3 of the polysialic acid gene cluster of Escherichia coli K1. J Bacteriol 173:4603–4610PubMedGoogle Scholar
  218. Pavelka MS Jr, Hayes SF, Silver RP (1994) Characterization of KpsT, the ATP-binding component of the ABC-transporter involved with the export of capsular polysialic acid in Escherichia coli K1. J Biol Chem 269:20149–20158PubMedGoogle Scholar
  219. Pazzani C, Rosenow C, Boulnois GJ, Bronner D, Jann K, Roberts IS (1993) Molecular analysis of region 1 of the Escherichia coli K5 antigen gene cluster: a region encoding proteins involved in cell surface expression of capsular polysaccharide. J Bacteriol 175:5978–5983PubMedGoogle Scholar
  220. Perry RD, Mier I Jr, Fetherston JD (2007) Roles of the Yfe and Feo transporters of Yersinia pestis in iron uptake and intracellular growth. Biometals 20:699–703PubMedCrossRefGoogle Scholar
  221. Peschel A, Gotz F (1996) Analysis of the Staphylococcus epidermidis genes epiF, -E, and -G involved in epidermin immunity. J Bacteriol 178:531–536PubMedGoogle Scholar
  222. Petrarca P, Ammendola S, Pasquali P, Battistoni A (2010) The Zur-regulated ZinT protein is an auxiliary component of the high-affinity ZnuABC zinc transporter that facilitates metal recruitment during severe zinc shortage. J Bacteriol 192:1553–1564PubMedCrossRefGoogle Scholar
  223. Pigeon RP, Silver RP (1994) Topological and mutational analysis of KpsM, the hydrophobic component of the ABC-transporter involved in the export of polysialic acid in Escherichia coli K1. Mol Microbiol 14:871–881PubMedCrossRefGoogle Scholar
  224. Pinkett HW, Lee AT, Lum P, Locher KP, Rees DC (2007) An inward-facing conformation of a putative metal-chelate-type ABC transporter. Science 315:373–377PubMedCrossRefGoogle Scholar
  225. Pluschke G, Mayden J, Achtman M, Levine RP (1983a) Role of the capsule and the O antigen in resistance of O18:K1 Escherichia coli to complement-mediated killing. Infect Immun 42:907–913PubMedGoogle Scholar
  226. Pluschke G, Mercer A, Kusecek B, Pohl A, Achtman M (1983b) Induction of bacteremia in newborn rats by Escherichia coli K1 is correlated with only certain O (lipopolysaccharide) antigen types. Infect Immun 39:599–608PubMedGoogle Scholar
  227. Poelarends GJ, Mazurkiewicz P, Putman M, Cool RH, Veen HW, Konings WN (2000) An ABC-type multidrug transporter of Lactococcus lactis possesses an exceptionally broad substrate specificity. Drug Resist Updat 3:330–334PubMedCrossRefGoogle Scholar
  228. Poelarends GJ, Mazurkiewicz P, Konings WN (2002) Multidrug transporters and antibiotic resistance in Lactococcus lactis. Biochim Biophys Acta 1555:1–7PubMedGoogle Scholar
  229. Poltorak A et al (1998) Genetic and physical mapping of the Lps locus: identification of the toll-4 receptor as a candidate gene in the critical region. Blood Cells Mol Dis 24:340–355PubMedCrossRefGoogle Scholar
  230. Postle K (1990) TonB and the gram-negative dilemma. Mol Microbiol 4:2019–2025PubMedCrossRefGoogle Scholar
  231. Price CT, Bukka A, Cynamon M, Graham JE (2008) Glycine betaine uptake by the ProXVWZ ABC transporter contributes to the ability of Mycobacterium tuberculosis to initiate growth in human macrophages. J Bacteriol 190:3955–3961PubMedCrossRefGoogle Scholar
  232. Raetz CR, Reynolds CM, Trent MS, Bishop RE (2007) Lipid A modification systems in gram-negative bacteria. Annu Rev Biochem 76:295–329PubMedCrossRefGoogle Scholar
  233. Ravaud S et al (2006) The ABC transporter BmrA from Bacillus subtilis is a functional dimer when in a detergent-solubilized state. Biochem J 395:345–353PubMedCrossRefGoogle Scholar
  234. Rees DC, Johnson E, Lewinson O (2009) ABC transporters: the power to change. Nat Rev Mol Cell Biol 10:218–227PubMedCrossRefGoogle Scholar
  235. Reuter G, Janvilisri T, Venter H, Shahi S, Balakrishnan L, van Veen HW (2003) The ATP binding cassette multidrug transporter LmrA and lipid transporter MsbA have overlapping substrate specificities. J Biol Chem 278:35193–35198PubMedCrossRefGoogle Scholar
  236. Rince A, Dufour A, Uguen P, Le Pennec JP, Haras D (1997) Characterization of the lacticin 481 operon: the Lactococcus lactis genes lctF, lctE, and lctG encode a putative ABC transporter involved in bacteriocin immunity. Appl Environ Microbiol 63:4252–4260PubMedGoogle Scholar
  237. Rodriguez GM, Smith I (2006) Identification of an ABC transporter required for iron acquisition and virulence in Mycobacterium tuberculosis. J Bacteriol 188:424–430PubMedCrossRefGoogle Scholar
  238. Rodriguez AM, Olano C, Vilches C, Mendez C, Salas JA (1993) Streptomyces antibioticus contains at least three oleandomycin-resistance determinants, one of which shows similarity with proteins of the ABC-transporter superfamily. Mol Microbiol 8:571–582PubMedCrossRefGoogle Scholar
  239. Rosinha GM et al (2002) Identification and characterization of a Brucella abortus ATP-binding cassette transporter homolog to Rhizobium meliloti ExsA and its role in virulence and protection in mice. Infect Immun 70:5036–5044PubMedCrossRefGoogle Scholar
  240. Rossi MS, Fetherston JD, Letoffe S, Carniel E, Perry RD, Ghigo JM (2001) Identification and characterization of the hemophore-dependent heme acquisition system of Yersinia pestis. Infect Immun 69:6707–6717PubMedCrossRefGoogle Scholar
  241. Ryndak MB, Wang S, Smith I, Rodriguez GM (2010) The Mycobacterium tuberculosis high-affinity iron importer, IrtA, contains an FAD-binding domain. J Bacteriol 192:861–869PubMedCrossRefGoogle Scholar
  242. Sabri M et al (2008) Contribution of the SitABCD, MntH, and FeoB metal transporters to the virulence of avian pathogenic Escherichia coli O78 strain chi7122. Infect Immun 76:601–611PubMedCrossRefGoogle Scholar
  243. Sabri M, Houle S, Dozois CM (2009) Roles of the extraintestinal pathogenic Escherichia coli ZnuACB and ZupT zinc transporters during urinary tract infection. Infect Immun 77:1155–1164PubMedCrossRefGoogle Scholar
  244. Saier MH Jr, Tran CV, Barabote RD (2006) TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res 34:D181–186PubMedCrossRefGoogle Scholar
  245. Saier MH, Ma CH, Rodgers L, Tamang DG, Yen MR (2008) Protein secretion and membrane insertion systems in bacteria and eukaryotic organelles. Adv Appl Microbiol 65:141–197PubMedCrossRefGoogle Scholar
  246. Sakamoto K, Margolles A, van Veen HW, Konings WN (2001) Hop resistance in the beer spoilage bacterium Lactobacillus brevis is mediated by the ATP-binding cassette multidrug transporter HorA. J Bacteriol 183:5371–5375PubMedCrossRefGoogle Scholar
  247. Sanders JD, Cope LD, Hansen EJ (1994) Identification of a locus involved in the utilization of iron by Haemophilus influenzae. Infect Immun 62:4515–4525PubMedGoogle Scholar
  248. Schalk IJ, Abdallah MA, Pattus F (2002) Recycling of pyoverdin on the FpvA receptor after ferric pyoverdin uptake and dissociation in Pseudomonas aeruginosa. Biochemistry 41:1663–1671PubMedCrossRefGoogle Scholar
  249. Schaller A et al (1999) Characterization of apxIVA, a new RTX determinant of Actinobacillus pleuropneumoniae. Microbiology 145(Pt 8):2105–2116PubMedCrossRefGoogle Scholar
  250. Schirner K, Stone LK, Walker S (2011) ABC transporters required for export of wall teichoic acids do not discriminate between different main chain polymers. ACS Chem Biol 6:407–412PubMedCrossRefGoogle Scholar
  251. Schlievert PM, Dunny GM, Stoehr JA, Assimacopoulos AP (1997) Aggregation and binding substances enhance pathogenicity in a rabbit model of Enterococcus faecalis endocarditis. Adv Exp Med Biol 418:789–791PubMedGoogle Scholar
  252. Schmidt H, Beutin L, Karch H (1995) Molecular analysis of the plasmid-encoded hemolysin of Escherichia coli O157:H7 strain EDL 933. Infect Immun 63:1055–1061PubMedGoogle Scholar
  253. Schmidt H, Maier E, Karch H, Benz R (1996) Pore-forming properties of the plasmid-encoded hemolysin of enterohemorrhagic Escherichia coli O157:H7. Eur J Biochem 241:594–601PubMedCrossRefGoogle Scholar
  254. Schneider E, Hunke S (1998) ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. FEMS Microbiol Rev 22:1–20PubMedCrossRefGoogle Scholar
  255. Schoner B et al (1992) Sequence similarity between macrolide-resistance determinants and ATP-binding transport proteins. Gene 115:93–96PubMedCrossRefGoogle Scholar
  256. Schreur PJ, Rebel JM, Smits MA, van Putten JP, Smith HE (2011) TroA of Streptococcus suis is required for manganese acquisition and full virulence. J Bacteriol 193:5073–5080CrossRefGoogle Scholar
  257. Schulein R, Gentschev I, Mollenkopf HJ, Goebel W (1992) A topological model for the haemolysin translocator protein HlyD. Mol Gen Genet 234:155–163PubMedGoogle Scholar
  258. Sebesta K, Horska K (1970) Mechanism of inhibition of DNA-dependent RNA polymerase by exotoxin of Bacillus thuringiensis. Biochim Biophys Acta 209:357–376PubMedCrossRefGoogle Scholar
  259. Shea CM, McIntosh MA (1991) Nucleotide sequence and genetic organization of the ferric enterobactin transport system: homology to other periplasmic binding protein-dependent systems in Escherichia coli. Mol Microbiol 5:1415–1428PubMedCrossRefGoogle Scholar
  260. Shibuya Y, Yamamoto T, Morimoto T, Nishino N, Kambara T, Okabe H (1991) Pseudomonas aeruginosa alkaline proteinase might share a biological function with plasmin. Biochim Biophys Acta 1077:316–324PubMedCrossRefGoogle Scholar
  261. Shitan N et al (2003) Involvement of CjMDR1, a plant multidrug-resistance-type ATP-binding cassette protein, in alkaloid transport in Coptis japonica. Proc Natl Acad Sci U S A 100:751–756PubMedCrossRefGoogle Scholar
  262. Shouldice SR, Skene RJ, Dougan DR, Snell G, McRee DE, Schryvers AB, Tari LW (2004) Structural basis for iron binding and release by a novel class of periplasmic iron-binding proteins found in gram-negative pathogens. J Bacteriol 186:3903–3910PubMedCrossRefGoogle Scholar
  263. Siarheyeva A, Sharom FJ (2009) The ABC transporter MsbA interacts with lipid A and amphipathic drugs at different sites. Biochem J 419:317–328PubMedCrossRefGoogle Scholar
  264. Siegers K, Entian KD (1995) Genes involved in immunity to the lantibiotic nisin produced by Lactococcus lactis 6F3. Appl Environ Microbiol 61:1082–1089PubMedGoogle Scholar
  265. Silver RP, Aaronson W, Vann WF (1987) Translocation of capsular polysaccharides in pathogenic strains of Escherichia coli requires a 60-kilodalton periplasmic protein. J Bacteriol 169:5489–5495PubMedGoogle Scholar
  266. Sleator RD, Wouters J, Gahan CG, Abee T, Hill C (2001) Analysis of the role of OpuC, an osmolyte transport system, in salt tolerance and virulence potential of Listeria monocytogenes. Appl Environ Microbiol 67:2692–2698PubMedCrossRefGoogle Scholar
  267. Smith AN, Boulnois GJ, Roberts IS (1990) Molecular analysis of the Escherichia coli K5 kps locus: identification and characterization of an inner-membrane capsular polysaccharide transport system. Mol Microbiol 4:1863–1869PubMedCrossRefGoogle Scholar
  268. Smith PC, Karpowich N, Millen L, Moody JE, Rosen J, Thomas PJ, Hunt JF (2002) ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol Cell 10:139–149PubMedCrossRefGoogle Scholar
  269. Solbiati JO, Ciaccio M, Farias RN, Gonzalez-Pastor JE, Moreno F, Salomon RA (1999) Sequence analysis of the four plasmid genes required to produce the circular peptide antibiotic microcin J25. J Bacteriol 181:2659–2662PubMedGoogle Scholar
  270. Speziali CD, Dale SE, Henderson JA, Vines ED, Heinrichs DE (2006) Requirement of Staphylococcus aureus ATP-binding cassette-ATPase FhuC for iron-restricted growth and evidence that it functions with more than one iron transporter. J Bacteriol 188:2048–2055PubMedCrossRefGoogle Scholar
  271. Steeghs L, den Hartog R, den Boer A, Zomer B, Roholl P, van der Ley P (1998) Meningitis bacterium is viable without endotoxin. Nature 392:449–450PubMedCrossRefGoogle Scholar
  272. Steinfels E et al (2004) Characterization of YvcC (BmrA), a multidrug ABC transporter constitutively expressed in Bacillus subtilis. Biochemistry 43:7491–7502PubMedCrossRefGoogle Scholar
  273. Stocker W, Bode W (1995) Structural features of a superfamily of zinc-endopeptidases: the metzincins. Curr Opin Struct Biol 5:383–390PubMedCrossRefGoogle Scholar
  274. Stocker W, Grams F, Baumann U, Reinemer P, Gomis-Ruth FX, McKay DB, Bode W (1995) The metzincins—topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci 4:823–840PubMedCrossRefGoogle Scholar
  275. Stumpe S, Bakker EP (1997) Requirement of a large K+-uptake capacity and of extracytoplasmic protease activity for protamine resistance of Escherichia coli. Arch Microbiol 167:126–136CrossRefGoogle Scholar
  276. Sun X, Ge R, Zhang D, Sun H, He QY (2010) Iron-containing lipoprotein SiaA in SiaABC, the primary heme transporter of Streptococcus pyogenes. J Biol Inorg Chem 15:1265–1273PubMedCrossRefGoogle Scholar
  277. Sutcliffe IC, Russell RR (1995) Lipoproteins of gram-positive bacteria. J Bacteriol 177:1123–1128PubMedGoogle Scholar
  278. Taboy CH, Vaughan KG, Mietzner TA, Aisen P, Crumbliss AL (2001) Fe3+ coordination and redox properties of a bacterial transferrin. J Biol Chem 276:2719–2724PubMedCrossRefGoogle Scholar
  279. Tamura J et al (1999) Immunomodulation by vitamin B12: augmentation of CD8+ T lymphocytes and natural killer (NK) cell activity in vitamin B12-deficient patients by methyl-B12 treatment. Clin Exp Immunol 116:28–32PubMedCrossRefGoogle Scholar
  280. Tefsen B, Bos MP, Beckers F, Tommassen J, de Cock H (2005) MsbA is not required for phospholipid transport in Neisseria meningitidis. J Biol Chem 280:35961–35966PubMedCrossRefGoogle Scholar
  281. Terasaka K et al (2005) PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Plant Cell 17:2922–2939PubMedCrossRefGoogle Scholar
  282. Thanabalu T, Koronakis E, Hughes C, Koronakis V (1998) Substrate-induced assembly of a contiguous channel for protein export from E. coli: reversible bridging of an inner-membrane translocase to an outer membrane exit pore. EMBO J 17:6487–6496PubMedCrossRefGoogle Scholar
  283. Thompson SA (2002) Campylobacter surface-layers (S-layers) and immune evasion. Ann Periodontol 7:43–53PubMedCrossRefGoogle Scholar
  284. Thompson SA, Shedd OL, Ray KC, Beins MH, Jorgensen JP, Blaser MJ (1998) Campylobacter fetus surface layer proteins are transported by a type I secretion system. J Bacteriol 180:6450–6458PubMedGoogle Scholar
  285. Tong Y, Guo M (2009) Bacterial heme-transport proteins and their heme-coordination modes. Arch Biochem Biophys 481:1–15PubMedCrossRefGoogle Scholar
  286. Tseng HJ, McEwan AG, Paton JC, Jennings MP (2002) Virulence of Streptococcus pneumoniae: PsaA mutants are hypersensitive to oxidative stress. Infect Immun 70:1635–1639PubMedCrossRefGoogle Scholar
  287. van Der Heide T, Poolman B (2000) Glycine betaine transport in Lactococcus lactis is osmotically regulated at the level of expression and translocation activity. J Bacteriol 182:203–206CrossRefGoogle Scholar
  288. van der Heide T, Poolman B (2002) ABC transporters: one, two or four extracytoplasmic substrate-binding sites? EMBO Rep 3:938–943PubMedCrossRefGoogle Scholar
  289. van Veen HW et al (1996) Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR1. Proc Natl Acad Sci U S A 93:10668–10672PubMedCrossRefGoogle Scholar
  290. Velamakanni S, Yao Y, Gutmann DA, van Veen HW (2008) Multidrug transport by the ABC transporter Sav 1866 from Staphylococcus aureus. Biochemistry 47:9300–9308PubMedCrossRefGoogle Scholar
  291. Velamakanni S et al (2009) A multidrug ABC transporter with a taste for salt. PLoS One 4:e6137PubMedCrossRefGoogle Scholar
  292. Walker KE, Moghaddame-Jafari S, Lockatell CV, Johnson D, Belas R (1999) ZapA, the IgA-degrading metalloprotease of Proteus mirabilis, is a virulence factor expressed specifically in swarmer cells. Mol Microbiol 32:825–836PubMedCrossRefGoogle Scholar
  293. Wandersman C, Delepelaire P (2004) Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647PubMedCrossRefGoogle Scholar
  294. Wang CC, Newton A (1971) An additional step in the transport of iron defined by the tonB locus of Escherichia coli. J Biol Chem 246:2147–2151PubMedGoogle Scholar
  295. Wang RC, Seror SJ, Blight M, Pratt JM, Broome-Smith JK, Holland IB (1991) Analysis of the membrane organization of an Escherichia coli protein translocator, HlyB, a member of a large family of prokaryote and eukaryote surface transport proteins. J Mol Biol 217:441–454PubMedCrossRefGoogle Scholar
  296. Wang B, Kraig E, Kolodrubetz D (1998) A new member of the S-layer protein family: characterization of the crs gene from Campylobacter rectus. Infect Immun 66:1521–1526PubMedGoogle Scholar
  297. Wassif C, Cheek D, Belas R (1995) Molecular analysis of a metalloprotease from Proteus mirabilis. J Bacteriol 177:5790–5798PubMedGoogle Scholar
  298. Weidenmaier C, Peschel A, Xiong YQ, Kristian SA, Dietz K, Yeaman MR, Bayer AS (2005) Lack of wall teichoic acids in Staphylococcus aureus leads to reduced interactions with endothelial cells and to attenuated virulence in a rabbit model of endocarditis. J Infect Dis 191:1771–1777PubMedCrossRefGoogle Scholar
  299. Welch RA, Dellinger EP, Minshew B, Falkow S (1981) Haemolysin contributes to virulence of extra-intestinal E. coli infections. Nature 294:665–667PubMedCrossRefGoogle Scholar
  300. Wemekamp-Kamphuis HH, Wouters JA, Sleator RD, Gahan CG, Hill C, Abee T (2002) Multiple deletions of the osmolyte transporters BetL, Gbu, and OpuC of Listeria monocytogenes affect virulence and growth at high osmolarity. Appl Environ Microbiol 68:4710–4716PubMedCrossRefGoogle Scholar
  301. Weston BF, Brenot A, Caparon MG (2009) The metal homeostasis protein, Lsp, of Streptococcus pyogenes is necessary for acquisition of zinc and virulence. Infect Immun 77:2840–2848PubMedCrossRefGoogle Scholar
  302. Whitfield C (2006) Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75:39–68PubMedCrossRefGoogle Scholar
  303. Whitfield C, Richards JC, Perry MB, Clarke BR, MacLean LL (1991) Expression of two structurally distinct d-galactan O antigens in the lipopolysaccharide of Klebsiella pneumoniae serotype O1. J Bacteriol 173:1420–1431PubMedGoogle Scholar
  304. Wickner W, Schekman R (2005) Protein translocation across biological membranes. Science 310:1452–1456PubMedCrossRefGoogle Scholar
  305. Woods RG, Burger M, Beven CA, Beacham IR (2001) The aprX-lipA operon of Pseudomonas fluorescens B52: a molecular analysis of metalloprotease and lipase production. Microbiology 147:345–354PubMedGoogle Scholar
  306. Wyckoff EE, Valle AM, Smith SL, Payne SM (1999) A multifunctional ATP-binding cassette transporter system from Vibrio cholerae transports vibriobactin and enterobactin. J Bacteriol 181:7588–7596PubMedGoogle Scholar
  307. Yang CC, Konisky J (1984) Colicin V-treated Escherichia coli does not generate membrane potential. J Bacteriol 158:757–759PubMedGoogle Scholar
  308. Zaharik ML et al (2004) The Salmonella enterica serovar Typhimurium divalent cation transport systems MntH and SitABCD are essential for virulence in an Nramp1G169 murine typhoid model. Infect Immun 72:5522–5525PubMedCrossRefGoogle Scholar
  309. Zaidi AH, Bakkes PJ, Lubelski J, Agustiandari H, Kuipers OP, Driessen AJ (2008) The ABC-type multidrug resistance transporter LmrCD is responsible for an extrusion-based mechanism of bile acid resistance in Lactococcus lactis. J Bacteriol 190:7357–7366PubMedCrossRefGoogle Scholar
  310. Zaitseva J, Jenewein S, Jumpertz T, Holland IB, Schmitt L (2005a) H662 is the linchpin of ATP hydrolysis in the nucleotide-binding domain of the ABC transporter HlyB. EMBO J 24:1901–1910PubMedCrossRefGoogle Scholar
  311. Zaitseva J, Jenewein S, Wiedenmann A, Benabdelhak H, Holland IB, Schmitt L (2005b) Functional characterization and ATP-induced dimerization of the isolated ABC-domain of the haemolysin B transporter. Biochemistry 44:9680–9690PubMedCrossRefGoogle Scholar
  312. Zhang L, Al-Hendy A, Toivanen P, Skurnik M (1993) Genetic organization and sequence of the rfb gene cluster of Yersinia enterocolitica serotype O:3: similarities to the dTDP-l-rhamnose biosynthesis pathway of Salmonella and to the bacterial polysaccharide transport systems. Mol Microbiol 9:309–321PubMedCrossRefGoogle Scholar
  313. Zhong X, Kolter R, Tai PC (1996) Processing of colicin V-1, a secretable marker protein of a bacterial ATP binding cassette export system, requires membrane integrity, energy, and cytosolic factors. J Biol Chem 271:28057–28063PubMedCrossRefGoogle Scholar
  314. Zolghadr B, Weber S, Szabo Z, Driessen AJ, Albers SV (2007) Identification of a system required for the functional surface localization of sugar binding proteins with class III signal peptides in Sulfolobus solfataricus. Mol Microbiol 64:795–806PubMedCrossRefGoogle Scholar
  315. Zutz A, Hoffmann J, Hellmich UA, Glaubitz C, Ludwig B, Brutschy B, Tampe R (2011) Asymmetric ATP hydrolysis cycle of the heterodimeric multidrug ABC transport complex TmrAB from Thermus thermophilus. J Biol Chem 286:7104–7115PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Victoria G. Lewis
    • 1
  • Miranda P. Ween
    • 1
  • Christopher A. McDevitt
    • 1
  1. 1.Research Centre for Infectious Diseases, School of Molecular and Biomedical ScienceUniversity of AdelaideAdelaideAustralia

Personalised recommendations