Advertisement

Protoplasma

, Volume 249, Issue 4, pp 1129–1135 | Cite as

Mitotic inheritance of endoplasmic reticulum in the primitive red alga Cyanidioschyzon merolae

  • Fumi YagisawaEmail author
  • Takayuki Fujiwara
  • Haruko Kuroiwa
  • Keiji Nishida
  • Yuuta Imoto
  • Tsuneyoshi Kuroiwa
Original Article

Abstract

Endoplasmic reticulum (ER) is a major site for secretory protein folding and lipid synthesis. Since ER cannot be synthesized de novo, it must be inherited during the cell cycle. Studying ER inheritance can however be difficult because the ER of typical plant and animal cells is morphologically complex. Therefore, our study used Cyanidioschyzon merolae, a species that has a simple ER structure, to investigate the inheritance of this organelle. Using immunofluorescence microscopy, we demonstrated that C. merolae contains a nuclear ER (nuclear envelope) and a small amount of peripheral ER extending from the nuclear ER. During mitosis, the nuclear ER became dumbbell-shaped and underwent division. Peripheral ER formed ring-like structures during the G1 and S phases, and extended toward the mitochondria and cell division planes during the M phase. These observations indicated that C. merolae undergoes closed mitosis, whereby the nuclear ER does not diffuse, and the peripheral ER contains cell cycle-specific structures.

Keywords

ER Inheritance Cyanidioschyzon 

Notes

Acknowledgments

This work was supported by a Research Fellowship from the Japanese Society for the Promotion of Science (11044) to F.Y., a Grant for Scientific Research on Priority Areas (19207004) to T.K., the Frontier Project “Adaptation and Evolution of Extremophiles” from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and a Grant-in-Aid to T.K. We have no financial relationship with the organization that sponsored this research.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Allen MB (1959) Studies with Cyanidium caldarium, an anomalously pigmented Chlorophyta. Arch Microbiol 32:270–277Google Scholar
  2. Barsanti L, Gualtieri P (2004) Algae: anatomy, biochemistry, and biotechnology. CRC Press, Boca RatonGoogle Scholar
  3. Caramelo JJ, Parodi AJ (2008) Getting in and out from calnexin/calreticulin cycles. J Biol Chem 283:10221–10225PubMedCrossRefGoogle Scholar
  4. De Craene JO, Coleman J, Estrada de Martin P, Pypaert M, Anderson S, Yates JR 3rd, Ferro-Novick S, Novick P (2006) Rtn1p is involved in structuring the cortical endoplasmic reticulum. Mol Biol Cell 17:3009–3020PubMedCrossRefGoogle Scholar
  5. Del Bem LE (2011) The evolutionary history of calreticulin and calnexin genes in green plants. Genetica 139:255–259PubMedCrossRefGoogle Scholar
  6. Du Y, Ferro-Novick S, Novick P (2004) Dynamics and inheritance of the endoplasmic reticulum. J Cell Sci 117:2871–2878PubMedCrossRefGoogle Scholar
  7. Estrada de Martin P, Du Y, Novick P, Ferro-Novick S (2005) Ice2p is important for the distribution and structure of the cortical ER network in Saccharomyces cerevisiae. J Cell Sci 118:65–77PubMedCrossRefGoogle Scholar
  8. Estrada P, Kim J, Coleman J, Walker L, Dunn B, Takizawa P, Novick P, Ferro-Novick S (2003) Myo4p and She3p are required for cortical ER inheritance in Saccharomyces cerevisiae. J Cell Biol 163:1255–1266PubMedCrossRefGoogle Scholar
  9. Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK (2011) ER tubules mark sites of mitochondrial division. Science 334:358–362PubMedCrossRefGoogle Scholar
  10. Fujiwara T, Yoshida Y, Kuroiwa T (2009) Synchronization of cell nuclear, mitochondrial and chloroplast divisions in the unicellular red alga Cyanidioschyzon merolae. Cytologia 74:1Google Scholar
  11. Imoto Y, Fujiwara T, Yoshida Y, Kuroiwa H, Maruyama S, Kuroiwa T (2010) Division of cell nuclei, mitochondria, plastids and microbodies mediated by mitotic spindle poles in the primitive red alga Cyanidioschyzon merolae. Protoplasma 241:63–74PubMedCrossRefGoogle Scholar
  12. Johnson UG, Porter KR (1968) Fine structure of cell division in Chlamydomonas reinhardi. Basal bodies and microtubules. J Cell Biol 38:403–425PubMedCrossRefGoogle Scholar
  13. Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J, Weissman JS, Walter P (2009) An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325:477–481PubMedCrossRefGoogle Scholar
  14. Kuroiwa T (1998) The primitive red algae: Cyanidium caldarium and Cyanidioschyzon merolae as model system for investigating the dividing apparatus of mitochondria and plastids. Bioessays 20:344–354CrossRefGoogle Scholar
  15. Kuroiwa T, Kawazu T, Takahashi H, Suzuki K, Ohta N, Kuroiwa H (1994) Comparison of ultrastructures between the ultra-small eukaryote Cyanidioschyzon merolae and Cyanidium caldarium. Cytologia 59:149–158CrossRefGoogle Scholar
  16. Lane JD, Allan VJ (1999) Microtubule-based endoplasmic reticulum motility in Xenopus laevis: activation of membrane-associated kinesin during development. Mol Biol Cell 10:1909–1922PubMedGoogle Scholar
  17. Lee C, Chen LB (1998) Dynamic behavior of endoplasmic reticulum in living cells. Cell 54:37–46CrossRefGoogle Scholar
  18. Matsuzaki M, Misumi O, Shin-I T, Maruyama S, Takahara M, Miyagishima S, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y, Kuroiwa T (2004) Genome sequence of the ultra-small unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657PubMedCrossRefGoogle Scholar
  19. Misumi O, Matsuzaki M, Nozaki H, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Yoshida Y, Kuroiwa H, Kuroiwa T (2005) Cyanidioschyzon merolae genome. A tool for facilitating comparable studies on organelle biogenesis in photosynthetic eukaryotes. Plant Physiol 137:567–585PubMedCrossRefGoogle Scholar
  20. Miyagishima S, Itoh R, Toda K, Kuroiwa H, Nishimura M, Kuroiwa T (1999) Microbody proliferation and segregation cycle in the single microbody in alga Cyanidioschyzon merolae. Planta 208:326–336CrossRefGoogle Scholar
  21. Miyagishima SY, Nishida K, Mori T, Matsuzaki M, Higashiyama T, Kuroiwa H, Kuroiwa T (2003) A plant-specific dynamin-related protein forms a ring at the chloroplast division site. Plant Cell 15:655–665PubMedCrossRefGoogle Scholar
  22. Nishida K, Takahara M, Miyagishima SY, Kuroiwa H, Matsuzaki M, Kuroiwa T (2003) Dynamic recruitment of dynamin for final mitochondrial severance in a primitive red alga. Proc Natl Acad Sci USA 100:2146–2151PubMedCrossRefGoogle Scholar
  23. Nishida K, Misumi O, Yagisawa F, Kuroiwa H, Nagata T, Kuroiwa T (2004) Triple immunofluorescent labeling of FtsZ, dynamin, and EF-Tu reveals a loose association between the inner and outer membrane mitochondrial division machinery in the red alga Cyanidioschyzon merolae. J Histochem Cytochem 52:843–849PubMedCrossRefGoogle Scholar
  24. Nishida K, Yagisawa F, Kuroiwa H, Nagata T, Kuroiwa T (2005) Cell cycle-regulated, microtubule-independent organelle division in Cyanidioschyzon merolae. Mol Biol Cell 16:2493–2502PubMedCrossRefGoogle Scholar
  25. Nozaki H, Takano H, Misumi O, Terasawa K, Matsuzaki M, Maruyama S, Nishida K, Yagisawa F, Yoshida Y, Fujiwara T, Takio S, Tamura K, Chung SJ, Nakamura S, Kuroiwa H, Tanaka K, Sato N, Kuroiwa T (2007) A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae. BMC Biol 5:28PubMedCrossRefGoogle Scholar
  26. Ohnuma M, Misumi O, Fujiwara T, Watanabe S, Tanaka K, Kuroiwa T (2009) Transient gene suppression in a red alga, Cyanidioschyzon merolae 10D. Protoplasma 236:107–112PubMedCrossRefGoogle Scholar
  27. Prinz WA, Grzyb L, Veenhuis M, Kahana JA, Silver PA, Rapoport TA (2000) Mutants affecting the structure of the cortical endoplasmic reticulum in Saccharomyces cerevisiae. J Cell Biol 150:461–474PubMedCrossRefGoogle Scholar
  28. Rizzuto R, Marchi S, Bonora M, Aguiari P, Bononi A, De Stefani D, Giorgi C, Leo S, Rimessi A, Siviero R, Zecchini E, Pinton P (2009) Ca(2+) transfer from the ER to mitochondria: when, how and why. Biochim Biophys Acta 1787:1342–1351PubMedCrossRefGoogle Scholar
  29. Sheahan MB, Rose RJ, McCurdy DW (2004) Organelle inheritance in plant cell division: the actin cytoskeleton is required for unbiased inheritance of chloroplasts, mitochondria and endoplasmic reticulum in dividing protoplasts. Plant J 37:379–390PubMedCrossRefGoogle Scholar
  30. Suzuki K, Ehara T, Osafune T, Kuroiwa H, Kawano S, Kuroiwa T (1994) Behavior of mitochondria, chloroplasts and their nuclei during the mitotic cycle in the ultramicroalga Cyanidioschyzon merolae. Eur J Cell Biol 63:280–288PubMedGoogle Scholar
  31. Takahashi H, Takano H, Yokoyama A, Hara Y, Kawano S, Toh-e A, Kuroiwa T (1995) Isolation, characterization and chromosomal mapping of an actin gene from the primitive red alga Cyanidioschyzon merolae. Curr Genet 28:484–490PubMedCrossRefGoogle Scholar
  32. Tanaka K, Oikawa K, Ohta N, Kuroiwa H, Kuroiwa T, Takahashi H (1996) Nuclear encoding of a chloroplast RNA polymerase sigma subunit in a red alga. Science 272:1932–1935PubMedCrossRefGoogle Scholar
  33. Terasaki M, Reese TS (1994) Interactions among endoplasmic reticulum, microtubules, and retrograde movements of the cell surface. Cell Motil Cytoskeleton 29:291–300PubMedCrossRefGoogle Scholar
  34. Toda K, Takano H, Matsunaga S, Miyagishima S, Kuroiwa H, Kuroiwa T (1998) Characterization of chloroplast isoform of serine acetyltransferase from the thermo-acidophilic red alga Cyanidioschyzon merolae. Biochim Biophys Acta 1403:72–84PubMedCrossRefGoogle Scholar
  35. Wada I, Rindress D, Cameron PH, Ou WJ, Doherty JJ 2nd, Louvard D, Bell AW, Dignard D, Thomas DY, Bergeron JJ (1991) SSR alpha and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane. J Biol Chem 266:19599–19610PubMedGoogle Scholar
  36. Waterman-Storer CM, Salmon ED (1998) Endoplasmic reticulum membrane tubules are distributed by microtubules in living cells using three distinct mechanisms. Curr Biol 8:798–806PubMedCrossRefGoogle Scholar
  37. Wiederkehr A, Du Y, Pypaert M, Ferro-Novick S, Novick P (2003) Sec3p is needed for the spatial regulation of secretion and for the inheritance of the cortical endoplasmic reticulum. Mol Biol Cell 14:4770–4782PubMedCrossRefGoogle Scholar
  38. Yagisawa F, Nishida K, Kuroiwa H, Nagata T, Kuroiwa T (2007) Identification and mitotic partitioning strategies of vacuoles in the unicellular red alga Cyanidioschyzon merolae. Planta 226:1017–1029PubMedCrossRefGoogle Scholar
  39. Yagisawa F, Nishida K, Yoshida M, Ohnuma M, Shimada T, Fujiwara T, Yoshida Y, Misumi O, Kuroiwa H, Kuroiwa T (2009) Identification of novel proteins in isolated polyphosphate vacuoles in the primitive red alga Cyanidioschyzon merolae. Plant J 60:882–893PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Fumi Yagisawa
    • 1
    • 3
    Email author
  • Takayuki Fujiwara
    • 1
  • Haruko Kuroiwa
    • 1
  • Keiji Nishida
    • 2
  • Yuuta Imoto
    • 1
  • Tsuneyoshi Kuroiwa
    • 1
  1. 1.Research Information Center for ExtremophilesRikkyo (St. Paul’s) UniversityTokyoJapan
  2. 2.Department of Systems BiologyHarvard Medical SchoolBostonUSA
  3. 3.Division of Biological SciencesUniversity of California San DiegoSan DiegoUSA

Personalised recommendations