, Volume 249, Issue 3, pp 541–585 | Cite as

The dynamic roles of intracellular lipid droplets: from archaea to mammals

  • Denis J. MurphyEmail author
Review Article


During the past decade, there has been a paradigm shift in our understanding of the roles of intracellular lipid droplets (LDs). New genetic, biochemical and imaging technologies have underpinned these advances, which are revealing much new information about these dynamic organelles. This review takes a comparative approach by examining recent work on LDs across the whole range of biological organisms from archaea and bacteria, through yeast and Drosophila to mammals, including humans. LDs probably evolved originally in microorganisms as temporary stores of excess dietary lipid that was surplus to the immediate requirements of membrane formation/turnover. LDs then acquired roles as long-term carbon stores that enabled organisms to survive episodic lack of nutrients. In multicellular organisms, LDs went on to acquire numerous additional roles including cell- and organism-level lipid homeostasis, protein sequestration, membrane trafficking and signalling. Many pathogens of plants and animals subvert their host LD metabolism as part of their infection process. Finally, malfunctions in LDs and associated proteins are implicated in several degenerative diseases of modern humans, among the most serious of which is the increasingly prevalent constellation of pathologies, such as obesity and insulin resistance, which is associated with metabolic syndrome.


Lipid droplet Trafficking Membrane Signalling Storage 



Abscisic acid




Endoplasmic reticulum


Lipid droplet


Myocardial lipid droplet protein


Phosphatidic acid


Perlipin, adipophilin and TIP47 (now termed Plin)










Co-polymer of hydroxybutyrate and hydroxyvalerate




Peroxisome proliferator-activated nuclear receptor




Tail-interacting 47-kDa protein (or Plin3)


Wax ester synthase


Wax ester synthetase/diacylglycerol acyltransferase



I am grateful to the many colleagues who kindly sent me copies of recent publications, including many pre-publication manuscripts.


  1. Abell BM, Holbrook LA, Abenes M, Murphy DJ, Hills MJ, Moloney MM (1997) Role of the proline knot motif in oleosin endoplasmic reticulum topology and oil body targeting. Plant Cell 9:1481–1493PubMedGoogle Scholar
  2. Abell BM, High S, Moloney MM (2002) Membrane protein topology of oleosin is constrained by its long hydrophobic domain. J Biol Chem 277:8602–8610PubMedCrossRefGoogle Scholar
  3. Abell BM, Hahn M, Holbrook LA, Moloney MM (2004) Membrane topology and sequence requirements for oil body targeting of oleosin. Plant J 37:461–470PubMedCrossRefGoogle Scholar
  4. Aboulaich N, Ortegren U, Vener AV, Stralfors P (2006) Association and insulin regulated translocation of hormone-sensitive lipase with ptrf. Biochem Biophys Res Commun 350:657–661PubMedCrossRefGoogle Scholar
  5. Accioly MT, Pacheco P, Maya-Monteiro CM, Carrossini N, Robbs BK, Oliveira SS, Kaufmann C, Morgado-Diaz JA, Bozza PT, Viola JP (2008) Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells. Cancer Res 68:1732–1740PubMedCrossRefGoogle Scholar
  6. Adeyo O, Horn PJ, Lee SK, Binns DD, Chandrahas A, Chapman KD, Goodman JM (2011) The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets. J Cell Biol 192:1043–1055PubMedCrossRefGoogle Scholar
  7. Agarwal AK, Garg A (2006) Genetic disorders of adipose tissue development, differentiation, and death. Annu Rev Genomic Hum Genet 7:175–199CrossRefGoogle Scholar
  8. Agarwal AK, Arioglu E, De Almeida S, Akkoc N, Taylor SI, Bowcock AM, Barnes RI, Garg A (2002) AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet 31:21–23PubMedCrossRefGoogle Scholar
  9. Ahmadian M, Wang Y, Sul HS (2010) Lipolysis in adipocytes. Int J Biochem Cell Biol 42:555–559PubMedCrossRefGoogle Scholar
  10. Alberts P, Rotin D (2010) Regulation of lipid droplet turnover by ubiquitin ligases. BMC Biol 8:94PubMedCrossRefGoogle Scholar
  11. Almeida PE, Silva AR, Maya-Monteiro CM, Töröcsik D, D’Avila H, Dezsö B, Magalhaes KG, Castro-Faria-Neto HC, Nagy L, Bozza PT (2009) Mycobacterium bovis bacillus Calmette–Guérin infection induces TLR2-dependent peroxisome proliferator-activated receptor gamma expression and activation: functions in inflammation, lipid metabolism, and pathogenesis. J Immunol 183:1337–1345PubMedCrossRefGoogle Scholar
  12. Altmann R (1890) Die Elementarorganisem und ihre Beziehungen zu den Zellen. Veit, LeipzigGoogle Scholar
  13. Alvarez HM, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376PubMedCrossRefGoogle Scholar
  14. Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165:377–386PubMedCrossRefGoogle Scholar
  15. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472PubMedGoogle Scholar
  16. Andersson MX, Sandelius AS (2004) A chloroplast-localized vesicular transporter system: a bioinformatics approach. BMC Genomic 5:40CrossRefGoogle Scholar
  17. Andersson L, Bostrom P, Ericson J, Rutberg M, Magnusson B, Marchesan D, Ruiz M, Asp L, Huang P, Frohman MA, Borén J, Olofsson SO (2006) PLD1 and ERK2 regulate cytosolic lipid droplet formation. J Cell Sci 119:2246–2257PubMedCrossRefGoogle Scholar
  18. Anil VS, Harmon AC, Sankara Rao K (2000) Spatio-temporal accumulation and activity of calcium-dependent protein kinases during embryogenesis, seed development, and germination in sandalwood. Plant Physiol 122:1035–1043PubMedCrossRefGoogle Scholar
  19. Anil VS, Harmon AC, Sankara Rao K (2003) Ca2+-dependent protein kinase in oil bodies: its biochemical characterization and significance. Plant Cell Physiol 44:367–376PubMedCrossRefGoogle Scholar
  20. Arner P (2011) Lipases in cachexia. Science 333:163–164PubMedCrossRefGoogle Scholar
  21. Arrese EL, Soulages JL (2010) Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 55:207–225PubMedCrossRefGoogle Scholar
  22. Athenstaedt K, Zweytick D, Jandrositz A, Kohlwein SD, Daum G (1999) Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae. J Bacteriol 181:6441–6448PubMedGoogle Scholar
  23. Aubert Y, Vile D, Pervent M, Aldon D, Ranty B, Simonneau T, Vavasseur A, Galaud JP (2010) RD20, a stress-inducible caleosin, participates in stomatal control, transpiration and drought tolerance in Arabidopsis thaliana. Plant Cell Physiol 51:1975–1987PubMedCrossRefGoogle Scholar
  24. Austin JR, Frost E, Vidi PA, Kessler F, Staehelin LA (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18:1693–1703PubMedCrossRefGoogle Scholar
  25. Ausubel FM (2005) Are innate immune signalling pathways in plants and animals conserved? Nature Immunol 6:973–979CrossRefGoogle Scholar
  26. Bago B, Zipfel W, Williams RM, Jun J, Arreola R, Lammers PJ, Pfeffer PE, Shachar-Hill Y (2002) Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiol 128:108–124PubMedCrossRefGoogle Scholar
  27. Baliga NS, Bonneau R, Facciotti MT, Pan M, Glusman G, Deutsch EW, Shannon P, Chiu Y, Weng RS, Gan RR, Hung P, Date SV, Marcotte E, Hood L, Ng WV (2004) Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res 14:2221–2234PubMedCrossRefGoogle Scholar
  28. Bartz R, Li WH, Venables B, Zehmer JK, Roth MR, Welti R, Anderson RG, Liu P, Chapman KD (2007a) Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J Lipid Res 48:837–847PubMedCrossRefGoogle Scholar
  29. Bartz R, Seemann J, Zehmer JK, Serrero G, Chapman KD, Anderson RG, Liu P (2007b) Evidence that mono-ADP-ribosylation of CtBP1/BARS regulates lipid storage. Mol Biol Cell 18:3015–3025PubMedCrossRefGoogle Scholar
  30. Bartz R, Zehmer JK, Zhu M, Chen Y, Serrero G, Zhao Y, Liu P (2007c) Dynamic activity of lipid droplets: protein phosphorylation and GTP-mediated protein translocation. J Proteome Res 6:3256–3265PubMedCrossRefGoogle Scholar
  31. Baud S, Lepiniec L (2010) Physiological and developmental regulation of seed oil production. Prog Lipid Res 49:235–249PubMedCrossRefGoogle Scholar
  32. Baud S, Mendoza MS, To A, Harscoet E, Lepiniec L, Dubreucq B (2007) WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J 50:825–838PubMedCrossRefGoogle Scholar
  33. Baud S, Wuilleme S, To A, Rochat C, Lepiniec L (2009) Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis. Plant J 60:933–947PubMedCrossRefGoogle Scholar
  34. Beller M, Riedel D, Jansch L, Dieterich G, Wehland J, Jäckle H, Kühnlein RP (2006) Characterization of the Drosophila lipid droplet subproteome. Mol Cell Proteomics 5:1082–1094PubMedCrossRefGoogle Scholar
  35. Beller M, Sztalryd C, Southall N, Bell M, Jäckle H, Auld DS, Oliver B (2008) COPI complex is a regulator of lipid homeostasis. PLoS Biol 6:2530–2549CrossRefGoogle Scholar
  36. Beller M, Bulankina AV, Hsiao HH, Urlaub H, Jäckle H, Kühnlein RP (2010a) PERILIPIN-dependent control of lipid droplet structure and fat storage in Drosophila. Cell Metab 12:521–532PubMedCrossRefGoogle Scholar
  37. Beller B, Thiel K, Thul PJ, Jäckle H (2010b) Lipid droplets: a dynamic organelle moves into focus. FEBS Lett 584:2176–2182PubMedCrossRefGoogle Scholar
  38. Benning C, Xu C, Awai K (2006) Non-vesicular and vesicular lipid trafficking involving plastids. Curr Opin Plant Biol 9:241–247PubMedCrossRefGoogle Scholar
  39. Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicauda JM (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375–387PubMedCrossRefGoogle Scholar
  40. Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hügler M, Alber BE, Fuchs G (2010) Autotrophic carbon fixation in archaea. Nat Rev Microbiol 8:447–460PubMedCrossRefGoogle Scholar
  41. Bewersdorf J, Farese RV, Walther TC (2011) A new way to look at fat. Nat Meth 8:132–133CrossRefGoogle Scholar
  42. Bhatla SC, Kaushik V, Yadav MK (2010) Use of oil bodies and oleosins in recombinant protein production and other biotechnological applications. Biotechnol Adv 28:293–300PubMedCrossRefGoogle Scholar
  43. Bickel PE, Tansey JT, Welte MA (2009) PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochim Biophys Acta 1791:419–440PubMedGoogle Scholar
  44. Binns D, Januszewski T, Chen Y, Hill J, Markin VS, Zhao Y, Gilpin C, Chapman KD, Anderson RGW, Goodman JM (2006) An intimate collaboration between peroxisomes and lipid bodies. J Cell Biol 173:719–731PubMedCrossRefGoogle Scholar
  45. Binns D, Lee S, Hilton CL, Jiang QX, Goodman JM (2010) Seipin is a discrete homooligomer. Biochemistry 49:10747–10755PubMedCrossRefGoogle Scholar
  46. Blaner WS, O’Byrne SM, Wongsiriroj N, Kluwe J, D’Ambrosio DM, Jiang H, Schwabe RF, Hillman EM, Piantedosi R, Libien J (2009) Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid storage. Biochim Biophys Acta 1791:467–473PubMedGoogle Scholar
  47. Bolhuis H, Palm P, Wende A, Falb M, Rampp M, Rodriguez-Valera F, Pfeiffer F, Oesterhelt D (2006) The genome of the square archaeon Haloquadratum walsbyi: life at the limits of water activity. BMC Genomics 7:169PubMedCrossRefGoogle Scholar
  48. Bonsegna S, Bettini S, Pagano R, Zacheo A, Vergaro V, Giovinazzo G, Caminati G, Leporatti S, Valli L, Santino A (2011) Plant oil bodies: novel carriers to deliver lipophilic molecules. Appl Biochem Biotechnol 163:792–802PubMedCrossRefGoogle Scholar
  49. Bordone L, Guarente L (2005) Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 6:298–305PubMedCrossRefGoogle Scholar
  50. Borowitz MJ, Blum JJ (1976) Triacylglycerol turnover in Tetrahymena pyriformis. Relation to phospholipid synthesis. Biochim Biophys Acta 424:114–124PubMedGoogle Scholar
  51. Boström P, Rutberg M, Ericsson J, Holmdahl P, Andersson L, Frohman MA, Boren J, Olofsson SO (2005) Cytosolic lipid droplets increase in size by microtubule-dependent complex formation. Arterioscler Thromb Vasc Biol 25:1945–1951PubMedCrossRefGoogle Scholar
  52. Boström P, Andersson L, Rutberg M, Perman J, Lidberg U, Johansson BR, Fernandez-Rodriguez J, Ericson J, Nilsson T, Borén J, Olofsson SO (2007) SNARE proteins mediate fusion between cytosolic lipid droplets and are implicated in insulin sensitivity. Nat Cell Biol 9:1286–1293PubMedCrossRefGoogle Scholar
  53. Boulant S, Montserret R, Hope RG, Ratinier M, Targett-Adams P, Lavergne JP, Penin F, McLauclan J (2006) Structural determinants that target the hepatitis C virus core protein to lipid droplets. J Biol Chem 281:22236–22247PubMedCrossRefGoogle Scholar
  54. Boulant S, Targett-Adams P, McLauchlan J (2007) Disrupting the association of hepatitis C virus core protein with lipid droplets correlates with a loss in production of infectious virus. J Gen Virol 88:2204–2213PubMedCrossRefGoogle Scholar
  55. Boulant S, Douglas MW, Moody L, Budkowska A, Targett-Adams P, McLauchlan J (2008) Hepatitis C virus core protein induces lipid droplet redistribution in a microtubule- and dynein-dependent manner. Traffic 9:1268–1282PubMedCrossRefGoogle Scholar
  56. Boutet E, El Mourabit H, Prot M, Nemani M, Khallouf E, Colard O, Maurice M, Durand-Schneider AM, Chrétien Y, Grès S, Wolf C, Saulnier-Blache JS, Capeau J, Magré J (2009) Seipin deficiency alters fatty acid Delta9 desaturation and lipid droplet formation in Berardinelli–Seip congenital lipodystrophy. Biochimie 91:796–803PubMedCrossRefGoogle Scholar
  57. Bozza PT, Viola JPB (2010) Lipid droplets in inflammation and cancer. Prostaglandin Leukot Essent Fatty Acids 82:243–250CrossRefGoogle Scholar
  58. Bozza PT, Yu W, Penrose JF, Morgan ES, Dvorak AM, Weller PF (1997) Eosinophil lipid bodies: specific, inducible intracellular sites for enhanced eicosanoid formation. J Exp Med 186:909–920PubMedCrossRefGoogle Scholar
  59. Bozza PT, Melo RC, Bandeira-Melo C (2007) Leukocyte lipid bodies regulation and function: contribution to allergy and host defense. Pharmacol Ther 113:30–49PubMedCrossRefGoogle Scholar
  60. Bozza PT, D’Avila H, Almeida PE, Magalhães KG, Molinaro R, Almeida CA, Maya-Monteiro CM (2009a) Lipid droplets in host–pathogen interactions. Clin Lipidol 4:791–807CrossRefGoogle Scholar
  61. Bozza PT, Magalhães KG, Weller PF (2009b) Leukocyte lipid bodies—biogenesis and functions in inflammation. Biochim Biophys Acta 1791:540–551PubMedGoogle Scholar
  62. Bozza PT, Bakker-Abreu I, Navarro-Xavier RA, Bandeira-Melo C (2011) Lipid body function in eicosanoid synthesis: an update. Prostaglandins Leukot Essent Fatty Acids. doi: 10.1016/j.plefa.2011.04.020
  63. Brasaemle DL (2007) The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 48:2547–2559PubMedCrossRefGoogle Scholar
  64. Brasaemle DL, Barber T, Wolins NE, Serrero G, Blanchette-Mackie EJ, Londos C (1997) Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. J Lipid Res 38:2249–2263PubMedGoogle Scholar
  65. Brasaemle DL, Dolios G, Shapiro L, Wang R (2004) Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 279:46835–46842PubMedCrossRefGoogle Scholar
  66. Bréhélin C, Kessler F, van Wijk KJ (2007) Plastoglobules: versatile lipoprotein particles in plastids. Trends Plant Sci 12:260–266PubMedCrossRefGoogle Scholar
  67. Browman DT, Hoegg MB, Robbins SM (2007) The SPFH domain-containing proteins: more than lipid raft markers. Trends Cell Biol 17:394–402PubMedCrossRefGoogle Scholar
  68. Buers I, Hofnagel O, Ruebel A, Severs NJ, Robenek H (2011) Lipid droplet associated proteins: an emerging role in atherogenesis. Histol Histopathol 26:631–642PubMedGoogle Scholar
  69. Canoy D, Buchan I (2007) Challenges in obesity epidemiology. Obes Rev 8:1–11PubMedCrossRefGoogle Scholar
  70. Castera L, Chouteau P, Hezode C, Zafrani ES, Dhumeaux D, Pawlotsky JM (2005) Hepatitis C virus-induced hepatocellular steatosis. Am J Gastroent 100:711–715PubMedCrossRefGoogle Scholar
  71. Catesson AM (1964) Origine, fonctionnement, et variation cytologiques saisonnières du cambium. Ann Sci Nat 5:368–375Google Scholar
  72. Cavalier-Smith T (2006) Rooting the tree of life by transition analyses. Biol Direct 1:19PubMedCrossRefGoogle Scholar
  73. Cermelli S, Guo Y, Gross SP, Welte MA (2006) The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr Biol 16:1783–1795PubMedCrossRefGoogle Scholar
  74. Cernac A, Benning C (2004) WRINKLED1 encodes an AP2 ⁄ EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J 40:575–585PubMedCrossRefGoogle Scholar
  75. Cernac A, Andre C, Hoffmann-Benning S, Benning C (2006) WRI1 is required for seed germination and seedling establishment. Plant Physiol 141:745–757PubMedCrossRefGoogle Scholar
  76. Chang BH, Chan L (2007) Emerging role of lipid droplet protein ADFP in health and disease. Am J Physiol Gastrointest Liver Physiol 292:1465–1468CrossRefGoogle Scholar
  77. Chawla A, Lee CH, Barak Y, He W, Rosenfeld J, Liao D, Han J, Kang H, Evans RM (2003) PPAR∂ is a very low-density lipoprotein sensor in macrophages. Proc Natl Acad Sci USA 100:1268–1273PubMedCrossRefGoogle Scholar
  78. Che P, Love TM, Frame BR, Wang K, Carriquiry AL, Howell SH (2006) Gene expression patterns during somatic embryo development and germination in maize Hi II callus cultures. Plant Mol Biol 62:1–14PubMedCrossRefGoogle Scholar
  79. Chen H, Klein A, Xiang M, Backhaus RA, Kuntz M (1998) Drought and wound induced expression in leaves of a gene encoding a chromoplast carotenoid-associated protein. Plant J 14:317–326CrossRefGoogle Scholar
  80. Chen JC, Tsai CC, Tzen JT (1999) Cloning and secondary structure analysis of caleosin, a unique calcium-binding protein in oil bodies of plant seeds. Plant Cell Physiol 40:1079–1086PubMedCrossRefGoogle Scholar
  81. Chen W, Yechoor VK, Chang BH, Li MV, March KL, Chan L (2009) The human lipodystrophy gene product Berardinelli–Seip congenital lipodystrophy 2/seipin plays a key role in adipocyte differentiation. Endocrinology 150:4552–4561PubMedCrossRefGoogle Scholar
  82. Cheng J, Fujita A, Ohsaki Y, Suzuki M, Shinohara Y, Fujimoto T (2009) Quantitative electron microscopy shows uniform incorporation of triglycerides into existing lipid droplets. Histochem Cell Biol 132:281–291PubMedCrossRefGoogle Scholar
  83. Cho SY, Shin ES, Park PJ, Shin DW, Chang HK, Kim D, Lee HH, Lee JH, Kim SH, Song MJ, Chang IS, Lee OS, Lee TR (2007) Identification of mouse Prp19p as a lipid droplet-associated protein and its possible involvement in the biogenesis of lipid droplets. J Biol Chem 282:2456–2465PubMedCrossRefGoogle Scholar
  84. Chong BM, Reigan P, Mayle-Combs KD, Orlicky DJ, McManaman JL (2011a) Determinants of adipophilin function in milk lipid formation and secretion. Trend Endocrinol Metab 22:211–217CrossRefGoogle Scholar
  85. Chong BM, Russell TD, Schaack J, Orlicky DJ, Reigan P, Ladinsky M, McManaman JL (2011b) The adipophilin C terminus is a self-folding membrane-binding domain that is important for milk lipid secretion. J Biol Chem 286:23254–23265PubMedCrossRefGoogle Scholar
  86. Christianson JL, Boutet E, Puri V, Chawla A, Czech MP (2010) Identification of the lipid droplet targeting domain of the Cidea protein. J Lipid Res 51:3455–3462PubMedCrossRefGoogle Scholar
  87. Chung KM, Cha SS, Jang SK (2008) A novel function of karyopherin beta3 associated with apolipoprotein A-I secretion. Mol Cells 26:291–298PubMedGoogle Scholar
  88. Cobbe N, Marshall KM, Rao SG, Chang CW, Di Cara F, Duca E, Vass S, Kassan A, Heck MMS (2009) The conserved metalloprotease invadolysin localizes to the surface of lipid droplets. J Cell Sci 122:3414–3423PubMedCrossRefGoogle Scholar
  89. Coca M, San Segundo B (2010) AtCPK1 calcium-dependent protein kinase mediates pathogen resistance in Arabidopsis. Plant J 63:526–540CrossRefGoogle Scholar
  90. Cocchiaro JL, Kumar Y, Fischer ER, Hackstadt T, Valdivia RH (2008) Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole. Proc Natl Acad Sci USA 105:9379–9384PubMedCrossRefGoogle Scholar
  91. Cole NB, Murphy DD, Grider T, Rueter S, Brasaemle D, Nussbaum RL (2002) Lipid droplet binding and oligomerization properties of the Parkinson’s disease protein σ-synuclein. J Biol Chem 277:6344–6352PubMedCrossRefGoogle Scholar
  92. Coleman RA, Lewin TM, Muoio DM (2000) Physiological and nutritional regulation of enzymes of triacylglycerol synthesis. Annu Rev Nutr 20:77–103PubMedCrossRefGoogle Scholar
  93. Connerth M, Tibor Czabany T, Wagner A, Zellnig G, Leitner E, Steyrer E, Daum G (2010) Oleate inhibits steryl ester synthesis and causes liposensitivity in yeast. J Biol Chem 285:26832–26841PubMedCrossRefGoogle Scholar
  94. Cooper MS, Hardin WR, Petersen TW, Cattolico RA (2010) Visualizing “green oil” in live algal cells. J Biosci Bioeng 109:198–201PubMedCrossRefGoogle Scholar
  95. Coppens I (2005) Contribution of host lipids to Toxoplasma pathogenesis. Cell Microbiol 8:1–9CrossRefGoogle Scholar
  96. Coppens I, Vielemeyer O (2005) Insights into unique physiological features of neutral lipids in Apicomplexa: from storage to potential mediation in parasite metabolic activities. J Parasitol 35:597–615Google Scholar
  97. Cordova-Tellez L, Burris JS (2002) Alignment of lipid bodies along the plasma membrane during the acquisition of desiccation tolerance in maize seed. Crop Sci 42:1982–1988CrossRefGoogle Scholar
  98. Courchesne NMD, Parisien A, Wang B, Lan CQ (2009) Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141:31–41PubMedCrossRefGoogle Scholar
  99. Cragg FJ, Willison JHM (1980) The ultrastructure of quiescent buds of Tilia europaea. Can J Bot 58:1804–1813CrossRefGoogle Scholar
  100. Crane J, Miller A, Van Roekel JW, Walters C (2003) Triacylglycerols determine the unusual storage physiology of Cuphea seed. Planta 217:699–708PubMedCrossRefGoogle Scholar
  101. Crane J, Kovach D, Gardner C, Walters C (2006) Triacylglycerol phase and ‘intermediate’ seed storage physiology: a study of Cuphea carthagenensis. Planta 223:1081–1089PubMedCrossRefGoogle Scholar
  102. Cypess AM, Kahn CR (2010) The role and importance of brown adipose tissue in energy homeostasis. Curr Opin Pediatr 22:478–484PubMedCrossRefGoogle Scholar
  103. Czabany T, Wagner A, Zweytick D, Lohner K, Leitner E, Ingolic E, Daum G (2008) Structural and biochemical properties of lipid particles from the yeast Saccharomyces cerevisiae. J Biol Chem 283:17065–17074PubMedCrossRefGoogle Scholar
  104. D’Avila H, Melo RC, Parreira GG, Werneck-Barroso E, Castro-Faria-Neto HC, Bozza PT (2006) Mycobacterium bovis bacillus Calmette–Guérin induces TLR2-mediated formation of lipid bodies: intracellular domains for eicosanoid synthesis in vivo. J Immunol 176:3087–3097PubMedGoogle Scholar
  105. D’Avila H, Almeida PE, Roque NR, Castro-Faria-Neto HC, Bozza PT (2007) Toll-like receptor-2-mediated C-C chemokine receptor 3 and eotaxin-driven eosinophil influx induced by Mycobacterium bovis BCG pleurisy. Infect Immun 75:1507–1511PubMedCrossRefGoogle Scholar
  106. D’Avila H, Maya-Monteiro CM, Bozza PT (2008) Lipid bodies in innate immune response to bacterial and parasite infections. Int Immunopharmacol 8:1308–1315PubMedCrossRefGoogle Scholar
  107. Dalen KT, Dahl T, Holter E, Arntsen B, Londos C, Sztalryd C, Nebb HI (2007) LSDP5 is a PAT protein specifically expressed in fatty acid oxidizing tissues. Biochim Biophys Acta 1771:210–212PubMedGoogle Scholar
  108. Dalton DA, Ma C, Shrestha S, Kitin P, Strauss SH (2011) Trade-offs between biomass growth and inducible biosynthesis of polyhydroxybutyrate in transgenic poplar. Plant Biotechnol J 9:759–767PubMedCrossRefGoogle Scholar
  109. Dammann C, Ichida A, Hong B, Romanowsky SM, Hrabak EM, Harmon AC, Pickard BG, Harper JF (2003) Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis. Plant Physiol 132:1840–1848PubMedCrossRefGoogle Scholar
  110. Daniel J, Deb C, Dubey VS, Sirakova TD, Abomoelak B, Morbidoni HR, Kolattukudy P (2004) Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J Bacteriol 186:5017–5030PubMedCrossRefGoogle Scholar
  111. Das SK, Eder S, Schauer S, Diwoky C, Temmel H, Guertl B, Gorkiewicz G, Tamilarasan KP, Kumari P, Trauner M, Zimmermann R, Vesely P, Haemmerle G, Zechner R, Hoefler G (2011) Adipose triglyceride lipase contributes to cancer-associated cachexia. Science 333:233–238PubMedCrossRefGoogle Scholar
  112. de Kroon AI (2007) Metabolism of phosphatidylcholine and its implications for lipid acyl chain composition in Saccharomyces cerevisiae. Biochim Biophys Acta 1771:343–352PubMedGoogle Scholar
  113. de Lima CS, Marques MA, Debrie AS, Almeida EC, Silva CA, Brennan PJ, Sarno EN, Menozzi FD, Pessolani MC (2009) Heparin-binding hemagglutinin (HBHA) of Mycobacterium leprae is expressed during infection and enhances bacterial adherence to epithelial cells. FEMS Microbiol Lett 292:162–169PubMedCrossRefGoogle Scholar
  114. Deb C, Lee CM, Dubey VS, Daniel J, Abomoelak B, Sirakova TD, Pawar S, Rogers L, Kolattukudy PE (2009) A novel in vitro multiple- stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS One 4:e6077PubMedCrossRefGoogle Scholar
  115. Débarre D, Supatto W, Pena AM, Fabre A, Tordjmann T, Combettes L, Schanne-Klein MC, Beaurepaire E (2005) Imaging the distribution and transport dynamics of lipid bodies in unstained cells and tissues using third-harmonic generation microscopy. Nat Method 3:47–53CrossRefGoogle Scholar
  116. Debelyy MO, Thoms S, Connerth M, Daum G, Erdmann R (2011) Involvement of the yeast hydrolase Ldh1p in lipid homeostasis. Eukaryot Cell 10:776–781PubMedCrossRefGoogle Scholar
  117. Deisenroth C, Itahana Y, Tollini L, Jin A, Zhang Y (2011) p53 inducible Dhrs3 is an endoplasmic reticulum protein associated with lipid droplet accumulation. J Biol Chem 286:28343–28356PubMedCrossRefGoogle Scholar
  118. Delikatny EJ, Chawla S, Leung DJ, Poptani H (2011) MR-visible lipids and the tumor microenvironment. NMR Biomed 24:592–611PubMedGoogle Scholar
  119. Deruere J, Romer S, D'Harlingue A, Backhaus RA, Kuntz M, Camara B (1994) Fibril assembly and carotenoid over accumulation in chromoplasts: a model for supramolecular lipoprotein structures. Plant Cell 6:119–133PubMedGoogle Scholar
  120. Dias JML, Lemos PC, Serafim LS, Oliveira C, Eiroa M, Albuquerque MGE, Ramos AM, Oliveira R, Reis MAM (2006) Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: from the substrate to the final product. Macromol Biosci 6:885–906PubMedCrossRefGoogle Scholar
  121. DiDonato D, Brasaemle DL (2003) Fixation methods for the study of lipid droplets by immunofluorescence microscopy. J Histchem Cytochem 51:773–780CrossRefGoogle Scholar
  122. Digel M, Ehehalt R, Füllekrug J (2010) Lipid droplets lighting up: insights from live microscopy. FEBS Lett 584:2168–2175PubMedCrossRefGoogle Scholar
  123. Dong H, Czaja MJ (2011) Regulation of lipid droplets by autophagy. Trend Endocrinol Metab 22:234–240CrossRefGoogle Scholar
  124. Dowhan W, Bogdanov M, Mileykovskaya E (2008) Functional roles of lipids in membranes. In: Vance DE, Vance JE (eds) Biochemistry of lipids, lipoproteins and membranes, 5th edn. Elsevier, Amsterdam, pp 1–37CrossRefGoogle Scholar
  125. Ducharme NA, Bickel PE (2008) Lipid droplets in lipogenesis and lipolysis. Endocrinol 149:942–949CrossRefGoogle Scholar
  126. Dvorak AM, Morgan ES, Tzizik DM, Weller PF (1994) Prostaglandin endoperoxide synthase (cyclooxygenase): ultrastructural localization to nonmembrane-bound cytoplasmic lipid bodies in human eosinophils and 3T3 fibroblasts. Int Arch Allergy Immunol 105:245–250PubMedCrossRefGoogle Scholar
  127. Eastmond PJ, Quettier AL, Kroon JTM, Craddock C, Adams N, Slabas AR (2010) Phosphatidic acid phosphohydrolase 1 and 2 regulate phospholipid synthesis at the endoplasmic reticulum in Arabidopsis. Plant Cell 22:2796–2811PubMedCrossRefGoogle Scholar
  128. Edvardsson U, Ljungberg A, Linden D, William-Olsson L, Peilot-Sjogren H, Ahnmark A, Oscarsson J (2006) PPARα activation increases triglyceride mass and adipose differentiation-related protein in hepatocytes. J Lipid Res 47:329–340PubMedCrossRefGoogle Scholar
  129. Eltgroth ML, Watwood RL, Wolfe GV (2005) Production and cellular localization of neutral long-chain lipids in the haptophyte algae Isochrysis galbana and Emiliana huxleyi. J Phycol 41:1000–1009CrossRefGoogle Scholar
  130. Farese RV, Walther TC (2009) Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139:855–860PubMedCrossRefGoogle Scholar
  131. Farrar JJ, Evert RF (1997) Seasonal changes in the ultrastructure of the vascular cambium of Robinia pseudoacacia. Trees 11:191–202Google Scholar
  132. Fei W, Shui G, Gaeta B, Du X, Kuerschner L, Li P, Brown AJ, Wenk MR, Parton RG, Yang H (2008) Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J Cell Biol 180:473–482PubMedCrossRefGoogle Scholar
  133. Fei W, Du X, Yang H (2011a) Seipin, adipogenesis and lipid droplets. Trend Endocrinol Metab 22:204–210CrossRefGoogle Scholar
  134. Fei W, Shui G, Zhang Y, Krahmer N, Ferguson C, Kapterian TS, Lin RC, Dawes IW, Brown AJ, Li P, Huang X, Parton RG, Wenk MR, Walther TC, Yang H (2011b) A role for phosphatidic acid in the formation of “supersized” lipid droplets. PLoS Genet 7:e1002201PubMedCrossRefGoogle Scholar
  135. Feng H, Ren M, Chen L, Rubin CS (2007) Properties, regulation and in vivo functions of a novel protein kinase D: C. elegans DKF-2 links diacylglycerol second messenger to the regulation of stress responses and lifespan. J Biol Chem 282:31273–31288PubMedCrossRefGoogle Scholar
  136. Fisher DB, Jensen WA, Ashton ME (1968) Histochemical studies of pollen: storage pockets in the endoplasmic reticulum (ER). Histochem 13:169–182Google Scholar
  137. Flaspohler JA, Jensen BC, Saveria T, Kifer CT, Parsons M (2010) A novel protein kinase localized to lipid droplets is required for droplet biogenesis in trypanosomes. Eukaryot Cell 9:1702–1710PubMedCrossRefGoogle Scholar
  138. Frandsen GI, Mundy J, Tzen JTC (2001) Oil bodies and their associated proteins, oleosin and caleosin. Physiol Plant 112:301–307PubMedCrossRefGoogle Scholar
  139. French SW (1989) Biochemical basis for alcohol-induced liver injury. Clin Biochem 22:41–49PubMedCrossRefGoogle Scholar
  140. Froissard M, D’andréa S, Boulard C, Chardot T (2009) Heterologous expression of AtClo1, a plant oil body protein, induces lipid accumulation in yeast. FEMS Yeast Res 9:428–438PubMedCrossRefGoogle Scholar
  141. Fujimoto T, Ohsaki Y (2006) Cytoplasmic lipid droplets: rediscovery of an old structure as a unique platform. Ann NY Acad Sci 1086:104–115PubMedCrossRefGoogle Scholar
  142. Fujimoto T, Parton RG (2010) Not just fat: the structure and function of the lipid droplet. Cold Spring Harb Perspect Biol 3:a004838CrossRefGoogle Scholar
  143. Fujimoto T, Kogo H, Nomura R, Une T (2000) Isoforms of caveolin 1 and caveolar structure. J Cell Sci 113:3509–3517PubMedGoogle Scholar
  144. Fujimoto T, Kogo H, Ishiguro K, Tauchi K, Nomura R (2001) Caveolin-2 is targeted to lipid droplets, a new “membrane domain” in the cell. J Cell Biol 152:1079–1085PubMedCrossRefGoogle Scholar
  145. Fujimoto Y, Itabe H, Sakai J, Makita M, Noda J, Mori M, Higashi Y, Kojima S, Takano T (2004) Identification of major proteins in the lipid droplet-enriched fraction isolated from the human hepatocyte cell line HuH7. Biochim Biophys Acta 1644:47–59PubMedCrossRefGoogle Scholar
  146. Fujimoto T, Ohsaki Y, Cheng J, Suzuki M, Shinohara Y (2008) Lipid droplets: a classic organelle with new outfits. Histochem Cell Biol 130:263–279PubMedCrossRefGoogle Scholar
  147. Fukui T, Kichise T, Iwata T, Doi Y (2001) Characterization of 13 kDa granule-associated protein in Aeromonas caviae and biosynthesis of polyhydroxyalkanoates with altered molar composition by recombinant bacteria. Biomacromol 2:148–153CrossRefGoogle Scholar
  148. Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, FitzHugh W, Calvo S, Engels R, Smirnov S, Atnoor D, Brown A, Allen N, Naylor J, Stange-Thomann N, DeArellano K, Johnson R, Linton L, McEwan P, McKernan K, Talamas J, Tirrell A, Ye W, Zimmer A, Barber RD, Cann I, Graham DE, Grahame DA, Guss AM, Hedderich R, Ingram-Smith C, Kuettner HC, Krzycki JA, Leigh JA, Li W, Liu J, Mukhopadhyay B, Reeve JN, Smith K, Springer TA, Umayam LA, White O, White RH, Conway de Macario E, Ferry JG, Jarrell KF, Jing H, Macario AJ, Paulsen I, Pritchett M, Sowers KR, Swanson RV, Zinder SH, Lander E, Metcalf WW, Birren B (2002) The genome of M.acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12:532–542PubMedCrossRefGoogle Scholar
  149. Gandotra S, Le Dour C, Bottomley W, Cervera P, Giral P, Reznik Y, Charpentier G, Auclair M, Delépine M, Barroso I, Semple RK, Lathrop M, Lascols O, Capeau J, O'Rahilly S, Magré J, Savage DB, Vigouroux C (2011) Perilipin deficiency and autosomal dominant partial lipodystrophy. N Engl J Med 364:740–748PubMedCrossRefGoogle Scholar
  150. Garg A, Agarwal AK (2009) Lipodystrophies: disorders of adipose tissue biology. Biochim Biophys Acta 1791:507–513PubMedGoogle Scholar
  151. Garton NJ, Christensen H, Minnikin DE, Adegbola RA, Barer MR (2002) Intracellular lipophilic inclusions of mycobacteria in vitro and in sputum. Microbiol 148:2951–2958Google Scholar
  152. Garton NJ, Waddell SJ, Sherratt AL, Lee SM, Smith RJ, Senner C, Hinds J, Rajakumar K, Adegbola RA, Besra GS, Butcher PD, Barer MR (2008) Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum. PLoS Med 5:e75PubMedCrossRefGoogle Scholar
  153. Gaspar I, Szabad J (2009) In vivo analysis of MT-based vesicle transport by confocal reflection microscopy. Cell Motil Cytoskelet 66:68–79CrossRefGoogle Scholar
  154. Gidda SK, Shockey JM, Falcone M, Kim PK, Rothstein SJ, Andrews DW, Dyer JM, Mullen RT (2011) Hydrophobic-domain-dependent protein–protein interactions mediate the localization of GPAT enzymes to ER subdomains. Traffic 12:452–472PubMedCrossRefGoogle Scholar
  155. Gillet B, Beyly A, Peltier G, Rey P (1998) Molecular characterization of CDSP 34, a chloroplastic protein induced by water deficit in Solanum tuberosum L. plants, and regulation of CDSP 34 expression by ABA and high illumination. Plant J 16:257–262PubMedCrossRefGoogle Scholar
  156. Girousse A, Langin D (2011) Adipocyte lipases and lipid droplet-associated proteins: insight from transgenic mouse models. Int J Obesity. doi: 10.1038/ijo.2011.113
  157. Glebov OO, Bright NA, Nichols BJ (2006) Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat Cell Biol 8:46–54PubMedCrossRefGoogle Scholar
  158. Gohon Y, Vindigni JD, Pallier A, Wien F, Celia H, Giuliani A, Tribet C, Chardot T, Briozzo P (2011) High water solubility and fold in amphipols of proteins with large hydrophobic regions: oleosins and caleosin from seed lipid bodies. Biochim Biophys Acta 1808:706–716PubMedCrossRefGoogle Scholar
  159. Goldberg AA, Bourque SD, Kyryakov P, Boukh-Viner T, Gregg C, Beach A, Burstein MT, Machkalyan G, Richard V, Rampersad S, Titorenko VI (2009) A novel function of lipid droplets in regulating longevity. Biochem Soc Trans 37:1050–1055PubMedCrossRefGoogle Scholar
  160. Gomis-Rüth FX (2003) Structural aspects of the metzincin clan of metalloendopeptidases. Mol Biotechnol 24:157–202PubMedCrossRefGoogle Scholar
  161. Goodman JM (2008) The gregarious lipid droplet. J Biol Chem 283:28005–28009PubMedCrossRefGoogle Scholar
  162. Goodman JM (2009) Demonstrated and inferred metabolism associated with cytosolic lipid droplets. J Lipid Res 50:2148–2156PubMedCrossRefGoogle Scholar
  163. Goodpaster BH, He J, Watkins S, Kelley DE (2001) Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab 86:5755–5761PubMedCrossRefGoogle Scholar
  164. Goto T, Nagai H, Egawa K, Kim YI, Kato S, Taimatsu A, Sakamoto T, Ebisu S, Hohsaka T, Miyagawa H, Murakami S, Takahashi N, Kawada T (2011) Farnesyl pyrophosphate regulates adipocyte functions as an endogenous PPARγ agonist. Biochem J 483:111–119CrossRefGoogle Scholar
  165. Gouda MK (2008) Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J Microbiol Biotechnol 24:1703–1711CrossRefGoogle Scholar
  166. Grage K, Jahns AC, Parlane N, Palanisamy R, Rasiah IA, Atwood JA, Rehm BHA (2009) Bacterial polyhydroxyalkanoate granules: biogenesis, structure, and potential use as nano-/micro-beads in biotechnological and biomedical applications. Biomacromol 10:660–669CrossRefGoogle Scholar
  167. Granneman JG, Moore HP (2008) Location, location: protein trafficking and lipolysis in adipocytes. Trend Endocrinol Metab 19:3–9CrossRefGoogle Scholar
  168. Greenberg AS, Coleman RA (2011) Expanding roles for lipid droplets. Trend Endocrinol Metab 22:195–196CrossRefGoogle Scholar
  169. Greenberg AS, Egan JJ, Wek SA, Garty NB, Blanchette-Mackie EJ, Londos C (1991) Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. J Biol Chem 266:11341–11346PubMedGoogle Scholar
  170. Greenberg AS, Coleman RA, Kraemer FB, McManaman JL, Obin MS, Puri V, Yan QW, Miyoshi H, Mashek DG (2011) The role of lipid droplets in metabolic disease in rodents and humans. J Clin Investig 121:2102–2110PubMedCrossRefGoogle Scholar
  171. Grefen C, Städele K, Ruzicka KL, Obrdlik P, Harter K, Horák J (2008) Subcellular localization and in vivo interactions of the Arabidopsis thaliana ethylene receptor family members. Mol Plant 1:308–320PubMedCrossRefGoogle Scholar
  172. Grönke S, Beller M, Fellert S, Ramakrishnan H, Jäckle H, Kühnlein RP (2003) Control of fat storage by a Drosophila PAT domain protein. Curr Biol 13:603–606PubMedCrossRefGoogle Scholar
  173. Grönke S, Mildner A, Fellert S, Tennagels N, Petry S, Müller G, Jäckle H, Kühnlein RP (2005) Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metab 1:323–330PubMedCrossRefGoogle Scholar
  174. Grönke S, Müller G, Hirsch J, Fellert S, Andreou A, Haase T, Jäckle H, Kühnlein RP (2007) Dual lipolytic control of body fat storage and mobilization in Drosophila. PLoS Biol 5:e137PubMedCrossRefGoogle Scholar
  175. Gropler MC, Harris TE, Hall AM, Wolins NE, Gross RW, Han X, Chen Z, Finck BN (2009) Lipin 2 is a liver-enriched phosphatidate phosphohydrolase enzyme that is dynamically regulated by fasting and obesity in mice. J Biol Chem 284:6763–67720PubMedCrossRefGoogle Scholar
  176. Gross SP, Welte MA, Block SM, Wieschaus EF (2000) Dynein-mediated cargo transport in vivo: a switch controls travel distance. J Cell Biol 148:945–956PubMedCrossRefGoogle Scholar
  177. Guenther JC, Hallen-Adams HE, Bücking H, Shachar-Hill Y, Trail F (2009) Triacylglyceride metabolism by Fusarium graminearum during colonization and sexual development on wheat. Mol Plant Path Inter 22:1492–1503Google Scholar
  178. Guilloteau M, Laloi M, Blais D, Crouzillat D, Mc Carthy J (2003) Oil bodies in Theobroma cacao seeds: cloning and characterization of cDNA encoding the 15.8 and 16.9 kDa oleosins. Plant Sci 164:597–606CrossRefGoogle Scholar
  179. Gunjan A, Verreault A (2003) A Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in S. cerevisiae. Cell 115:537–549PubMedCrossRefGoogle Scholar
  180. Guo Y, Walther TC, Rao M, Stuurman N, Goshima G, Terayama K, Wong JS, Vale RD, Walter P, Farese RV (2008) Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453:657–661PubMedCrossRefGoogle Scholar
  181. Guo Y, Cordes KR, Farese RV, Walther TC (2009) Lipid droplets at a glance. J Cell Sci 122:749–752PubMedCrossRefGoogle Scholar
  182. Gurusamy C, Davis PJ, Bal AK (2000) Seasonal changes in perennial nodules of beach pea (Lathyrus maratimus [L] Bigel.) with special reference to oleosomes. Int J Plant Sci 161:631–638CrossRefGoogle Scholar
  183. Gutzeit HO (1986) The role of microfilaments in cytoplasmic streaming in Drosophila follicles. J Cell Sci 80:159–169PubMedGoogle Scholar
  184. Haemmerle G, Lass A, Zimmermann R, Gorkiewicz G, Meyer C, Rozman J, Heldmaier G, Maier R, Theussl C, Eder S, Kratky D, Wagner EF, Klingenspor M, Hoefler G, Zechner R (2006) Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312:734–737PubMedCrossRefGoogle Scholar
  185. Han GS, Wu WI, Carman GM (2006) The Saccharomyces cerevisiae lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme. J Biol Chem 281:9210–9218PubMedCrossRefGoogle Scholar
  186. Han GS, Siniossoglou S, Carman GM (2007a) The cellular functions of the yeast lipin homolog PAH1p are dependent on its phosphatidate phosphatase activity. J Biol Chem 282:37026–37035PubMedCrossRefGoogle Scholar
  187. Han J, Lu Q, Zhou L, Zhou J, Xiang H (2007b) Molecular characterization of the phaECHm genes, required for biosynthesis of poly(3-hydroxybutyrate) in the extremely halophilic archaeon Haloarcula marismortui. Appl Environ Microbiol 73:6058–6065PubMedCrossRefGoogle Scholar
  188. Han J, Lu Q, Zhou L, Liu H, Xiang H (2009) Identification of the polyhydroxyalkanoate (PHA)-specific acetoacetyl coenzyme A reductase among multiple FabG paralogs in Haloarcula hispanica and reconstruction of the PHA biosynthetic pathway in Haloferax volcanii. Appl Environ Microbiol 75:6168–6175PubMedCrossRefGoogle Scholar
  189. Han J, Hou J, Liu H, Cai S, Feng B, Zhou J, Xiang H (2010a) Wide distribution among halophilic Archaea of a novel polyhydroxyalkanoate synthase subtype with homology to bacterial type III synthases. Appl Environ Microbiol 76:7811–7819PubMedCrossRefGoogle Scholar
  190. Han J, Li M, Hou J, Wu L, Zhou J, Xiang H (2010b) Comparison of four phaC genes from Haloferax mediterranei and their function in different PHBV copolymer biosyntheses in Haloarcula hispanica. Saline Syst 6:9PubMedCrossRefGoogle Scholar
  191. Hanano A, Burcklen M, Flenet M, Ivancich A, Louwagie M, Garin J, Blée E (2006) Plant seed peroxygenase is an original heme-oxygenase with an EF-hand calcium binding motif. J Biol Chem 281:33140–33151PubMedCrossRefGoogle Scholar
  192. Hänisch J, Wältermann M, Robenek H, Steinbüchel A (2006) The Ralstonia eutropha H16 phasin PhaP1 is targeted to intracellular triacylglycerol inclusions in Rhodococcus opacus PD630 and Mycobacterium smegmatis mc2155, and provides an anchor to target other proteins. Microbiol 152:3271–3280CrossRefGoogle Scholar
  193. Hanley SZ, Pappin DJ, Rahman D, White AJ, Elborough KM, Slabas AR (1999) Re-evaluation of the primary structure of Ralstonia eutropha phasin and implications for polyhydroxyalkanoic acid granule binding. FEBS Lett 447:99–105PubMedCrossRefGoogle Scholar
  194. Hanstein J (1880) Ueber die Gestaltungsvorgange in den Zellkerne bei der Theilung der Zellen. Botan Abhandl Morphol Physiol Bonn 4:2Google Scholar
  195. Hapala I, Marza E, Ferreira T (2011) Is fat so bad? Modulation of endoplasmic reticulum stress by lipid droplet formation. Biol Cell 103:271–285PubMedCrossRefGoogle Scholar
  196. Harayama S, Kishira H, Kasai Y, Shutsubo K (1999) Petroleum biodegradation in marine environments. J Mol Microbiol Biotechnol 1:63–70PubMedGoogle Scholar
  197. Harayama S, Kasai Y, Hara A (2004) Microbial communities in oil-contaminated seawater. Curr Opin Biotechnol 15:205–214PubMedCrossRefGoogle Scholar
  198. Harris TE, Finck BN (2011) Dual function lipin proteins and glycerolipid metabolism. Trend Endocrinol Metab 22:226–233CrossRefGoogle Scholar
  199. Harris CA, Haas JT, Streeper RS, Stone SJ, Kumari M, Yang K, Han X, Brownell N, Gross RW, Zechner R, Farese RV (2011) DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes. J Lipid Res 52:657–667PubMedCrossRefGoogle Scholar
  200. Hayashi T, Su TP (2003) Sigma-1 receptors (sigma(1) binding sites) form raft-like microdomains and target lipid droplets on the endoplasmic reticulum: roles in endoplasmic reticulum lipid compartmentalization and export. J Pharmacol Exp Ther 306:718–725PubMedCrossRefGoogle Scholar
  201. Hayashi YK, Matsuda C, Ogawa M, Goto K, Tominaga K, Mitsuhashi S, Park YE, Nonaka I, Hino-Fukuyo N, Haginoya K, Sugano H, Nishino I (2009) Human ptrf mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J Clin Invest 119:2623–2633PubMedCrossRefGoogle Scholar
  202. He YQ, Wu Y (2009) Oil body biogenesis during Brassica napus embryogenesis. J Integr Plant Biol 51:792–799PubMedCrossRefGoogle Scholar
  203. Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C 28:693–703PubMedGoogle Scholar
  204. Heneen WK, Karlsson G, Brismar K, Gummeson PO, Marttila S, Leonova S, Carlsson AS, Bafor M, Banas A, Mattsson B, Debski H, Stymne S (2008) Fusion of oil bodies in endosperm of oat grains. Planta 228:589–599PubMedCrossRefGoogle Scholar
  205. Hensel W (1986) Cytodifferentiation of polar plant cells. Planta 169:293–303PubMedCrossRefGoogle Scholar
  206. Herker E, Ott M (2011) Unique ties between hepatitis C virus replication and intracellular lipids. Trend Endocrinol Metab 22:241–248CrossRefGoogle Scholar
  207. Herker E, Harris C, Hernandez C, Carpentier A, Kaehlcke K, Rosenberg AR, Farese RV Jr, Ott M (2010) Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1. Nat Meth 16:1295–1298CrossRefGoogle Scholar
  208. Herman E (2008) Endoplasmic reticulum bodies: solving the insoluble. Curr Opin Plant Biol 11:672–679PubMedCrossRefGoogle Scholar
  209. Hernández-Pinzón I, Ross JHE, Barnes KA, Damant AP, Murphy DJ (1999) Composition and role of tapetal lipid bodies in the biogenesis of the pollen coat of Brassica napus. Planta 208:588–598PubMedCrossRefGoogle Scholar
  210. Hernández-Pinzón I, Patel K, Murphy DJ (2001) The novel calcium-binding protein, caleosin, has distinct endoplasmic reticulum and lipid-body associated isoforms. Plant Physiol Biochem 39:1–9CrossRefGoogle Scholar
  211. Hezayen FF, Gutierrez CM, Steinbüchel A, Tindall BJ, Rehm BH (2009) Halopiger aswanensis sp. nov., a polymer-producing, extremely halophilic archaeon isolated from hypersaline soil. Int J Syst Evol Microbiol 60:633–637PubMedCrossRefGoogle Scholar
  212. Hickenbottom SJ, Kimmel AR, Londos C, Hurley JH (2004) Structure of a lipid droplet protein: the PAT family member TIP47. Structure 12:1199–1207PubMedGoogle Scholar
  213. Hinson ER, Cresswell P (2009) The antiviral protein, viperin, localizes to lipid droplets via its N-terminal amphipathic α -helix. Proc Natl Acad Sci USA 106:20452–20457PubMedCrossRefGoogle Scholar
  214. Hodges BDM, Wu CC (2010) Proteomic insights into an expanded cellular role for cytoplasmic lipid droplets. J Lipid Res 51:262–273PubMedCrossRefGoogle Scholar
  215. Hommel A, Hesse D, Volker W, Jaschke A, Moser M, Engel T, Blüher M, Zahn C, Chadt A, Ruschke K, Vogel H, Kluge R, Robenek H, Joost HJ, Schürmann A (2010) The ARF-like GTPase ARFRP1 is essential for lipid droplet growth and is involved in the regulation of lipolysis. Mol Cell Biol 30:1231–1242PubMedCrossRefGoogle Scholar
  216. Hooper C, Puttamadappa SS, Loring Z, Shekhtman A, Bakowska JC (2010) Spartin activates atrophin-1-interacting protein 4 (AIP4) E3 ubiquitin ligase and promotes ubiquitination of adipophilin on lipid droplets. BMC Biol 8:72PubMedCrossRefGoogle Scholar
  217. Hörl G, Wagner A, Cole LK, Malli R, Reicher H, Kotzbeck P, Köfeler H, Höfler G, Frank S, Bogner-Strauss JG, Sattler W, Vance DE, Steyrer E (2011) Sequential synthesis and methylation of phosphatidylethanolamine promote lipid droplet biosynthesis and stability in tissue culture and in vivo. J Biol Chem 285:17338–17350CrossRefGoogle Scholar
  218. Horn PJ, Ledbetter NR, James CN, Hoffman WD, Case CR, Verbeck GF, Chapman KD (2011) Visualization of lipid droplet composition by direct organelle mass spectrometry. J Biol Chem 286:3298–3306PubMedCrossRefGoogle Scholar
  219. Horton JD, Goldstein JL, Brown MS (2002) SREBPs: transcriptional mediators of lipid homeostasis. Cold Spring Harb Symp Quant Biol 67:491–498PubMedCrossRefGoogle Scholar
  220. Hsiao ESL, Tzen JTC (2011) Ubiquitination of oleosin-H and caleosin in sesame oil bodies after seed germination. Plant Physiol Biochem 49:77–81PubMedCrossRefGoogle Scholar
  221. Hsieh K, Huang A (2005) Lipid-rich tapetosomes in Brassica tapetum are composed of oleosin-coated oil droplets and vesicles, both assembled in and then detached from the endoplasmic reticulum. Plant J 43:889–899PubMedCrossRefGoogle Scholar
  222. Huang CY, Chung CI, Lin YC, Hsing YC, Huang AHC (2009) Oil bodies and oleosins in Physcomitrella possess characteristics representative of early trends in evolution. Plant Physiol 150:1192–1203PubMedCrossRefGoogle Scholar
  223. Itabe H (2010) Intracellular lipid droplet-associated proteins: unique members and their biological functions. Foreword. Biol Pharm Bull 33:341–341CrossRefGoogle Scholar
  224. Jacobson K, Mouritsen OG, Anderson RGW (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14PubMedCrossRefGoogle Scholar
  225. Jacquier N, Choudhary V, Mari M, Toulmay A, Reggiori F, Schneiter R (2011) Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J Cell Sci 124:2424–2437PubMedCrossRefGoogle Scholar
  226. Jägerström S, Polesie S, Wickström Y, Johansson BR, Schröder HD, Hojlund K, Boström P (2009) Lipid droplets interact with mitochondria using SNAP23. Cell Biol Int 33:934–940PubMedCrossRefGoogle Scholar
  227. James CN, Horn PJ, Case CR, Gidda SK, Zhang D, Mullen RT, Dyer JM, Anderson RG, Chapman KD (2010) Disruption of the Arabidopsis CGI-58 homologue produces Chanarin–Dorfman-like lipid droplet accumulation in plants. Proc Natl Acad Sci USA 107:17833–17838PubMedCrossRefGoogle Scholar
  228. Jarrell KF, Walters AD, Bochiwal C, Borgia JM, Dickinson T, Chong JPJ (2011) Major players on the microbial stage: why archaea are important. Microbiol 157:919–936CrossRefGoogle Scholar
  229. Jendrossek D (2009) Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). J Bacteriol 191:3195–3202PubMedCrossRefGoogle Scholar
  230. Jenkins GM, Frohman MA (2005) Phospholipase D: a lipid centric review. Cell Mol Life Sci 62:2305–2316PubMedCrossRefGoogle Scholar
  231. Jenkins CM, Mancuso DJ, Yan W, Sims HF, Gibson B, Gross RW (2004) Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem 279:48968–48975PubMedCrossRefGoogle Scholar
  232. Jensen WA, Fisher DB, Ashton ME (1968) Cotton embryogenesis: the pollen cytoplasm. Planta 81:206–228CrossRefGoogle Scholar
  233. Jordy MN (2004) Seasonal variation of organogenetic activity and reserves allocation in the shoot apex of Pinus pinaster Ait. Ann Bot 93:25–37PubMedCrossRefGoogle Scholar
  234. Kadereit B, Kumar P, Wang WJ, Miranda D, Snapp EL, Severina N, Torregroza I, Evans T, Silver DL (2008) Evolutionarily conserved gene family important for fat storage. Proc Natl Acad Sci USA 105:94–99PubMedCrossRefGoogle Scholar
  235. Kahn RA, Cherfils J, Elias M, Lovering RC, Munro S, Schümann A (2006) Nomenclature for the human Arf family of GTP-binding proteins: ARF, ARL, and SAR proteins. J Cell Biol 172:645–650PubMedCrossRefGoogle Scholar
  236. Kalantari F, Bergeron JJ, Nilsson T (2010) Biogenesis of lipid droplets—how cells get fatter. Mol Memb Biol 27:462–468CrossRefGoogle Scholar
  237. Kalia VC, Lal S, Cheema S (2007) Insight in to the phylogeny of polyhydroxyalkanoate biosynthesis: horizontal gene transfer. Gene 389:19–26PubMedCrossRefGoogle Scholar
  238. Kalscheuer R (2010) Genetics of wax ester and triacylglycerol biosynthesis in bacteria. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, BerlinGoogle Scholar
  239. Kalscheuer R, Steinbüchel A (2003) A novel bifunctional wax ester synthase/acyl-CoA: diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in 653 Acinetobacter calcoaceticus ADP1. J Biol Chem 278:8075–8082PubMedCrossRefGoogle Scholar
  240. Kalscheuer R, Stöveken T, Malkus U, Reichelt R, Golyshin PN, Sabirova JS, Ferrer M, Timmis KN, Steinbüchel A (2007a) Analysis of storage lipid accumulation in Alcanivorax borkumensis: Evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol 189:918–928PubMedCrossRefGoogle Scholar
  241. Kalscheuer R, Stölting T, Steinbüchel A (2007b) Microdiesel: Escherichia coli engineered for fuel production. Microbiol 152:2529–2536Google Scholar
  242. Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S (1996) Sequence analysis of the genome of the unicellular Cyanobacterium sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136PubMedCrossRefGoogle Scholar
  243. Kanwischer M, Porfirova S, Bergmuller E, Dormann P (2005) Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol 137:713–723PubMedCrossRefGoogle Scholar
  244. Karimi M, de Oliviera Manes CL, van Montagu M, Gheysen G (2002) Activation of a pollenin promoter upon nematode infection. J Nemat 34:75–79Google Scholar
  245. Kasai Y, Kishira H, Sasaki T, Syutsubo WK, Harayama S (2002) Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environ Microbiol 4:141–147PubMedCrossRefGoogle Scholar
  246. Katavic V, Agrawal GK, Hajduch M, Harris SL, Thelen JJ (2006) Protein and lipid composition analysis of oil bodies from two Brassica napus cultivars. Proteomics 16:4586–4598CrossRefGoogle Scholar
  247. Katz A, Jimenez C, Pick U (1995) Isolation and characterization of a protein associated with carotene globules in the alga Dunaliella bardawil. Plant Physiol 108:1657–1664PubMedGoogle Scholar
  248. Keeling PJ, Fast NM (2002) Microsporidia: biology and evolution of highly reduced intracellular parasites. Annu Rev Microbiol 56:93–116PubMedCrossRefGoogle Scholar
  249. Keeling PJ, Luker MA, Palmer JD (2000) Evidence from beta-tubulin phylogeny that microsporidia evolved from within the fungi. Mol Biol Evol 17:23–31PubMedCrossRefGoogle Scholar
  250. Keenan TW, Mather IH (2006) Intracellular origin of milk fat globules and the nature of the milk fat globule membrane. In: Fox PF, McSweeney PLH (eds) Advanced Dairy Chemistry, vol 2, lipids. Springer, New York, pp 137–171Google Scholar
  251. Kessler F, Schnell D, Blobel G (1999) Identification of proteins associated with plastoglobules isolated from pea (Pisum sativum L.) chloroplasts. Planta 208:107–113PubMedCrossRefGoogle Scholar
  252. Khandelia H, Duelund L, Pakkanen KI, Ipsen JH (2010) Triglyceride blisters in lipid bilayers: implications for lipid droplet biogenesis and the mobile lipid signal in cancer cell membranes. PLoS One 5:e12811PubMedCrossRefGoogle Scholar
  253. Khozin-Goldberg I, Cohen Z (2011) Unraveling algal lipid metabolism: recent advances in gene identification. Biochimie 93:91e100CrossRefGoogle Scholar
  254. Kim S, Dale B (2005) Life cycle assessment study of biopolymers (polyhydroxyalkanoates)-derived from no-tilled corn. Int J Life Cycle Anal 10:200–210CrossRefGoogle Scholar
  255. Kim HU, Wu SSH, Ratnayake C, Huang AHC (2001) Brassica rapa has three genes that encode proteins associated with different neutral lipids in plastids of specific tissues. Plant Physiol 126:330–341PubMedCrossRefGoogle Scholar
  256. Kim HU, Hsei K, Ratnayake C, Huang AHC (2002) A novel group of oleosins is present inside the pollen of Arabidopsis. J Biol Chem 277:22677–22684PubMedCrossRefGoogle Scholar
  257. Kim YY, Jung KW, Yoo KS, Jeung JU, Shin JS (2011) A stress-responsive caleosin-like protein, AtCLO4, acts as a negative regulator of ABA responses in Arabidopsis. Plant Cell Physiol 52:874–884PubMedCrossRefGoogle Scholar
  258. Kimmel AR, Brasaemle DL, McAndrews-Hill M, Sztalryd C, Londos C (2010) Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J Lipid Res 51:468–471PubMedCrossRefGoogle Scholar
  259. Kobayashi T, Shiraki M, Abe T, Sugiyama A, Saito T (2003) Purification and properties of an intracellular 3-hydroxybutyrate oligomer hydrolase (PhaZ2) in Ralstonia eutropha H16 and its identification as a novel intracellular poly(3-hydroxybutyrate) depolymerase. J Bacteriol 185:3485–3490PubMedCrossRefGoogle Scholar
  260. Koller M, Hesse P, Bona R, Kutschera C, Atlić A, Braunegg G (2007) Potential of various archae- and eubacterial strains as industrial polyhydroxyalkanoate producers from whey. Macromol Biosci 7:218–226PubMedCrossRefGoogle Scholar
  261. Koonin EV (2003) Horizontal gene transfer: the path to maturity. Mol Microbiol 50:725–727PubMedCrossRefGoogle Scholar
  262. Koonin EV (2010) The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biology 11:209PubMedCrossRefGoogle Scholar
  263. Kosa M, Ragauskas AJ (2011) Lipids from heterotrophic microbes: advances in metabolism research. Trends Biotechnol 29:53–61PubMedCrossRefGoogle Scholar
  264. Krahmer N, Guo Y, Farese RV, Walther TC (2009) SnapShot: lipid droplets. Cell 139:1024–1024PubMedCrossRefGoogle Scholar
  265. Krasowski MJ, Owens JN (1990) Seasonal changes in the apical zonation and ultrastructure of coastal Douglas fir seedlings (Pseudotsuga menziesii). Am J Bot 77:245–260CrossRefGoogle Scholar
  266. Kuerschner L, Moessinger C, Thiele C (2008) Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. Traffic 9:338–352PubMedCrossRefGoogle Scholar
  267. Kühnlein RP (2011) The contribution of the Drosophila model to lipid droplet research. Prog Lipid Res 50:348–356PubMedCrossRefGoogle Scholar
  268. Kurat CF, Natter K, Petschnigg J, Wolinski H, Scheuringer K, Scholz H, Zimmermann R, Leber R, Zechner R, Kohlwein SD (2006) Obese yeast: triglyceride lipolysis is functionally conserved from mammals to yeast. J Biol Chem 281:491–500PubMedCrossRefGoogle Scholar
  269. Kurat C, Wolinski H, Petschnigg J, Kaluarachchi S, Andrews B, Natter K, Kohlwein S (2009) Cdk1/cdc28-dependent activation of the major triacylglycerol lipase tgl4 in yeast links lipolysis to cell-cycle progression. Mol Cell 33:53–63PubMedCrossRefGoogle Scholar
  270. Laizet Y, Pontier D, Mache R, Kuntz M (2004) Subfamily organization and phylogenetic origin of genes encoding plastid lipid-associated proteins of the fibrillin type. J Genome Sci Tech 3:19–28CrossRefGoogle Scholar
  271. Langenkamper G, Manac'h N, Broin M, Cuiné S, Becuwe N, Kuntz M, Rey P (2001) Accumulation of plastid lipid- associated proteins (fibrillin/CDSP34) upon oxidative stress, ageing and biotic stress in Solanaceae and in response to drought in other species. J Exp Bot 52:1545–1554PubMedCrossRefGoogle Scholar
  272. Larigauderie G, Furman C, Jaye M, Lasselin C, Copin C, Fruchart JC, Castro G, Rouis M (2004) Adipophilin enhances lipid accumulation and prevents lipid efflux from THP-1 macrophages: potential role in atherogenesis. Arterioscler Thromb Vasc Biol 24:504–510PubMedCrossRefGoogle Scholar
  273. Le Lay S, Dugail I (2009) Connecting lipid droplet biology and the metabolic syndrome. Prog Lipid Res 48:191–195PubMedCrossRefGoogle Scholar
  274. Le Lay S, Hajduch E, Lindsay MR, Le Liepvre X, Thiele C, Ferre P, Parton RG, Kurzchalia T, Simons K, Dugail I (2006) Cholesterol-induced caveolin targeting to lipid droplets in adipocytes: a role for caveolar endocytosis. Traffic 7:549–561PubMedCrossRefGoogle Scholar
  275. Le Lay S, Blouin CM, Hajduch E, Dugail I (2009) Filling up adipocytes with lipids. Lessons from caveolin-1 deficiency. Biochim Biophys Acta 1791:514–518PubMedGoogle Scholar
  276. Lee MC, Miller EA, Goldberg J, Orci L, Schekman R (2004) Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol 20:87–123PubMedCrossRefGoogle Scholar
  277. Lee SC, Corradi N, Byrnes EJ 3rd, Torres-Martinez S, Dietrich FS, Keeling PJ, Heitman J (2008) Microsporidia evolved from ancestral sexual fungi. Curr Biol 18:1675–1679PubMedCrossRefGoogle Scholar
  278. Legat A, Gruber C, Zangger K, Wanner G, Stan-Lotter H (2010) Identification of polyhydroxyalkanoates in Halococcus and other haloarchaeal species. Appl Microbiol Biotechnol 87:1119–1127PubMedCrossRefGoogle Scholar
  279. Leprince O, van Aelst AC, Pritchard HW, Murphy DJ (1998) Oleosins prevent oil-body coalescence during seed imbibition as suggested by a low-temperature scanning electron microscope study of desiccation-tolerant and -sensitive oilseeds. Planta 204:109–119CrossRefGoogle Scholar
  280. Lersten NR, Czlapinski AR, Curtis JD, Freckmann R, Horner HT (2006) Oil bodies in leaf mesophyll cells of angiosperms: overview and a selected survey. Am J Bot 93:1731–1739PubMedCrossRefGoogle Scholar
  281. Leubner-Metzger G, Meins F (2000) Sense transformation reveals a novel role for class I ß-1,3-glucanase in tobacco seed germination. Plant J 23:215–221PubMedCrossRefGoogle Scholar
  282. Li M, Murphy DJ, Lee KH, Wilson R, Smith LJ, Clark DC, Sung JY (2002) Purification and structural characterization of the central hydrophobic domain of oleosin. J Biol Chem 277:37888–37895PubMedCrossRefGoogle Scholar
  283. Liang H, Yao N, Song JT, Luo S, Lu H, Greenberg JT (2003) Ceramides modulate programmed cell death in plants. Genes Dev 17:2636–2641PubMedCrossRefGoogle Scholar
  284. Lillo JG, Rodriguez-Valera F (1990) Effects of culture conditions on poly(β-hydroxybutyric acid) production by Haloferax mediterranei. Appl Environ Microbiol 56:2517–2521PubMedGoogle Scholar
  285. Litvak V, Shaul YD, Shulewitz M, Amarilio R, Carmon S, Lev S (2002) Targeting of Nir2 to lipid droplets is regulated by a specific threonine residue within its PI-transfer domain. Curr Biol 12:1513–1518PubMedCrossRefGoogle Scholar
  286. Liu CP, Lin LP (2001) Ultrastructural study and lipid formation of Isochrysis sp. CCMP1324. Bot Bull Acad Sin 42:207–214Google Scholar
  287. Liu P, Ying Y, Zhao Y, Mundy DI, Zhu M, Anderson RG (2004) Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem 279:3787–3792PubMedCrossRefGoogle Scholar
  288. Liu H, Hedley P, Cardle L, Wright KM, Hein I, Marshall D, Waugh R (2005) Characterisation and functional analysis of two barley caleosins expressed during barley caryopsis development. Planta 221:513–522PubMedCrossRefGoogle Scholar
  289. Liu P, Bartz R, Zehmer J, Ying Y, Zhu M, Serrero G, Anderson R (2007) Rab-regulated interaction of early endosomes with lipid droplets. Biochim Biophys Acta 1773:784–793PubMedCrossRefGoogle Scholar
  290. Liu L, Brown D, McKee M, Lebrasseur NK, Yang D, Albrecht KH, Ravid K, Pilch PF (2008) Deletion of cavin/ptrf causes global loss of caveolae, dyslipidemia, and glucose intolerance. Cell Metab 8:310–317PubMedCrossRefGoogle Scholar
  291. Liu J, Hua W, Zhan G, Wei F, Wang X, Liu G, Wang H (2010) Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus. Plant Physiol Biochem 48:9–15PubMedCrossRefGoogle Scholar
  292. Lockshon D, Surface LE, Kerr EO, Kaeberlein M, Kennedy BK (2007) The sensitivity of yeast mutants to oleic acid implicates the peroxisome and other processes in membrane function. Genetics 175:77–91PubMedCrossRefGoogle Scholar
  293. Lohmann A, Schöttler MA, Bréhélin C, Kessler F, Bock R, Cahoon EB, Dörmann P (2006) Deficiency in phylloquinone (vitamin K1) methylation affects prenyl quinone distribution, photosystem I abundance, and anthocyanin accumulation in the Arabidopsis AtmenG mutant. J Biol Chem 281:40461–40472PubMedCrossRefGoogle Scholar
  294. Lösel DM, Sancholle M (1996) Fungal lipids. In: Prasad R, Ghannoum MA (eds) Lipids of pathogenic fungi. CRC, Boca Raton, pp 27–62Google Scholar
  295. Lu Q, Han J, Zhou L, Zhou J, Xiang H (2008) Genetic and biochemical characterization of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthase in Haloferax mediterranei. J Bacteriol 190:4173–4180PubMedCrossRefGoogle Scholar
  296. Luo M, Fadeev EA, Groves J (2005) Mycobactin-mediated iron acquisition within macrophages. Nat Chem Biol 1:149–153PubMedCrossRefGoogle Scholar
  297. Lütke-Eversloh T, Bergander K, Luftmann H, Steinbüchel A (2001a) Biosynthesis of a new class of biopolymer: bacterial synthesis of a sulfur-containing polymer with thioester linkages. Microbiology 147:11–19PubMedGoogle Scholar
  298. Lütke-Eversloh T, Bergander K, Luftmann H, Steinbüchel A (2001b) Biosynthesis of poly(3hydroxybutyrate-co-3-mercaptobutyrate) as a sulfur analogue to poly(3-hydroxybutyrate) (PHB). Biomacromolecules 2:1061–1065PubMedCrossRefGoogle Scholar
  299. MacEachran DP, Prophete ME, Sinskey AJ (2010) The Rhodococcus opacus PD630 heparin-binding hemagglutinin homolog TadA mediates lipid body formation. App Env Microbiol 76:7217–7225CrossRefGoogle Scholar
  300. Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H, Ishiguro S, Nakamura K (2009) An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J 60:476–487PubMedCrossRefGoogle Scholar
  301. Magra AL, Mertz PS, Torday JS, Londos C (2006) Role of adipose differentiation-related protein in lung surfactant production: a reassessment. J Lipid Res 47:2367–2373PubMedCrossRefGoogle Scholar
  302. Magré J, Delepine M, Khallouf E, Gedde-Dahl T Jr, Van Maldergem L, Sobel E, Papp J, Meier M, Megarbane A, Bachy A, Verloes A, d’Abronzo FH, Seemanova E, Assan R, Baudic N, Bourut C, Czernichow P, Huet F, Grigorescu F, de Kerdanet M, Lacombe D, Labrune P, Lanza M, Loret H, Matsuda F, Navarro J, Nivelon-Chevalier A, Polak M, Robert JJ, Tric P, Tubiana-Rufi N, Vigouroux C, Weissenbach J, Savasta S, Maassen JA, Trygstad O, Bogalho P, Freitas P, Medina JL, Bonnicci F, JoVe BI, Loyson G, Panz VR, Raal FJ, O’Rahilly S, Stephenson T, Kahn CR, Lathrop M, Capeau J (2001) Identification of the gene altered in Berardinelli–Seip congenital lipodystrophy on chromosome 11q13. Nat Genet 28:365–370PubMedCrossRefGoogle Scholar
  303. Manac’h N, Kuntz M (1999) Stress induction of a nuclear gene encoding for a plastid protein is mediated by photo-oxidative events. Plant Physiol Biochem 37:859–868PubMedCrossRefGoogle Scholar
  304. Manilla-Pérez E, Lange AB, Hetzler S, Wältermann M, Kalscheuer R, Steinbüchel A (2010) Isolation and characterization of a mutant of the marine bacterium Alcanivorax borkumensis SK2 defective in lipid biosynthesis. Appl Env Microbiol 76:2884–2894CrossRefGoogle Scholar
  305. Markley N, Nykiforuk CL, Boothe JG, Moloney MM (2006) Producing proteins using transgenic oilbody-oleosin technology. BioPharm Int 19:34–57Google Scholar
  306. Martin S, Parton RG (2005) Caveolin, cholesterol, and lipid bodies. Sem Cell Devel Biol 16:163–174CrossRefGoogle Scholar
  307. Martin S, Parton RG (2006) Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol 7:373–378PubMedCrossRefGoogle Scholar
  308. Martinez-Canovas MJ, Quesada E, Llamas I, Bejar V (2004) Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 54:733–737PubMedCrossRefGoogle Scholar
  309. Mattos KA, D'Avila H, Rodrigues LS, Oliveira VG, Sarno EN, Atella GC, Pereira GM, Bozza PT, Pessolani MC (2010) Lipid droplet formation in leprosy: Toll-like receptor-regulated organelles involved in eicosanoid formation and Mycobacterium leprae pathogenesis. J Leukoc Biol 87:371–384PubMedCrossRefGoogle Scholar
  310. Mattos KA, Lara FA, Oliveira VGC, Rodrigues LS, D’Avila H, Melo RCN, Manso PPA, Sarno EN, Bozza PT, Pessolani MCV (2011) Modulation of lipid droplets by Mycobacterium leprae in Schwann cells: a putative mechanism for host lipid acquisition and bacterial survival in phagosomes. Cell Microbiol 13:259–273PubMedCrossRefGoogle Scholar
  311. Mayfield JA, Preuss D (2000) Rapid initiation of Arabidopsis pollination requires the oleosin-domain protein GRP17. Nat Cell Biol 2:128–130PubMedCrossRefGoogle Scholar
  312. McHugh B, Krause SA, Yu B, Deans AM, Heasman S, McLaughlin P, Heck MM (2004) Invadolysin: a novel, conserved metalloprotease links mitotic structural rearrangements with cell migration. J Cell Biol 167:673–686PubMedCrossRefGoogle Scholar
  313. Meex RC, Schrauwen P, Hesselink MK (2009) Modulation of myocellular fat stores: lipid droplet dynamics in health and disease. Am J Physiol Regul Integr Comp Physiol 297:913–924CrossRefGoogle Scholar
  314. Melo RC, D’Avila H, Fabrino DL, Almeida PE, Bozza PT (2003) Macrophage lipid body induction by Chagas disease in vivo: putative intracellular domains for eicosanoid formation during infection. Tissue Cell 35:59–67PubMedCrossRefGoogle Scholar
  315. Melo RCN, D'Avila H, Wan HC, Bozza PT, Dvorak AM, Weller PF (2011) Lipid bodies in inflammatory cells: structure, function, and current imaging techniques. J Histochem Cytochem 59:540–556PubMedCrossRefGoogle Scholar
  316. Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7:763–777PubMedCrossRefGoogle Scholar
  317. Minnaard R, Schrauwen P, Schaart G, Jorgensen JA, Lenaers E, Mensink M, Hesselink MKC (2009) Adipocyte differentiation-related protein and OXPAT in rat and human skeletal muscle: involvement in lipid accumulation and type 2 diabetes mellitus. J Clin Endocrinol Metab 94:4077–4085PubMedCrossRefGoogle Scholar
  318. Mishra R, Eminacipator SN, Miller C, Kern T, Simonson MS (2004) Adipose differentiation related protein and regulators of lipid homeostasis identified by gene expression profiling in murine db/db diabetic kidney. Am J Physiol Renal Physiol 286:913–921CrossRefGoogle Scholar
  319. Miura S, Gan JW, Brzostowski J, Parisi MJ, Schultz CJ, Londos C, Oliver B, Kimmel AR (2002) Functional conservation for lipid storage droplet association among perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium. J Biol Chem 277:32253–32257PubMedCrossRefGoogle Scholar
  320. Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, Zayas M, Bartenschlager R, Wakita T, Hijikata M, Shimotohno K (2007) The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 9:1089–1097PubMedCrossRefGoogle Scholar
  321. Mlícková K, Luo Y, D’Andrea S, Pec P, Chardot T, Nicaud J (2004a) Acyl-CoA oxidase, a key step for lipid accumulation in the yeast Yarrowia lipolytica. J Mol Catal B: Enzym 28:81–85CrossRefGoogle Scholar
  322. Mlícková K, Roux E, Athenstaedt K, d’Andrea S, Daum G, Chardot T, Nicaud JM (2004b) Lipid accumulation, lipid body formation, and acyl coenzyme A oxidases of the yeast Yarrowia lipolytica. Appl Environ Microbiol 70:3918–3924PubMedCrossRefGoogle Scholar
  323. Moellering ER, Benning C (2010) RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot Cell 9:97–106PubMedCrossRefGoogle Scholar
  324. Moessinger C, Kuerschner L, Spandl J, Shevchenko A, Thiele C (2011) Human lysophosphatidylcholine acyltransferase 1 and 2 are located to lipid droplets, where they catalyze the formation of phosphatidylcholine. J Biol Chem 286:21330–21339PubMedCrossRefGoogle Scholar
  325. Monte E, Ludevid D, Prat S (1999) Leaf C40.4: a carotenoid-associated protein involved in the modulation of photosynthetic efficiency? Plant J 19:399–410PubMedCrossRefGoogle Scholar
  326. Mooney BP (2009) The second green revolution? Production of plant-based biodegradable plastics. Biochem J 418:219–232PubMedCrossRefGoogle Scholar
  327. Moro C, Bajpeyi S, Smith SR (2008) Determinants of intramyocellular triglyceride turnover: implications for insulin sensitivity. Am J Physiol Endocrinol Metab 294:E203–E213PubMedCrossRefGoogle Scholar
  328. Mosammaparast N, Pemberton LF (2004) Karyopherins: from nuclear-transport mediators to nuclear-function regulators. Trends Cell Biol 14:547–556PubMedCrossRefGoogle Scholar
  329. Mukherjee S, Maxfield FR (2004) Membrane domains. Ann Rev Cell Dev Biol 20:839–866CrossRefGoogle Scholar
  330. Müller M, Schins JM (2002) Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy. J Phys Chem B 106:3715–3723CrossRefGoogle Scholar
  331. Murphy DJ (1982) The importance of non-planar bilayer regions in photosynthetic membranes and their stabilisation by galactolipids. FEBS Lett 150:19–26CrossRefGoogle Scholar
  332. Murphy DJ (2001) Biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40:325–438PubMedCrossRefGoogle Scholar
  333. Murphy DJ (2005) Lipid-associated proteins. In: Murphy DJ (ed) Plant Lipids: biology, utilisation and manipulation. Blackwell, OxfordGoogle Scholar
  334. Murphy DJ (2006) The extracellular pollen coat in members of the Brassicaceae: composition, biosynthesis, and functions in pollination. Protoplasma 228:31–39PubMedCrossRefGoogle Scholar
  335. Murphy DJ (2008) Future prospects for biofuels. Chem Today 26:44–48Google Scholar
  336. Murphy DJ (2010) Manipulation of oil crops for industrial applications. In: Singh BP (ed) Industrial crops and uses. CABI, UK, pp 183–206CrossRefGoogle Scholar
  337. Murphy DJ (2011) Plants, biotechnology and agriculture. CABI, UKGoogle Scholar
  338. Murphy DJ, Ross JHE (1998) Biosynthesis, targeting and processing of oleosin-like proteins, which are major pollen coat components in Brassica napus. Plant J 13:1–16PubMedGoogle Scholar
  339. Murphy DJ, Vance J (1999) Mechanisms of lipid body formation. Trends Biochem Sci 24:109–115PubMedCrossRefGoogle Scholar
  340. Murphy DJ, Woodrow IE (1983) Lateral heterogeneity in the distribution of acyl lipids and proteins in photosynthetic membranes. Biochim Biophys Acta 725:104–112CrossRefGoogle Scholar
  341. Murphy DJ, Hernendez-Pinzon I, Patel K, Hope RG, McLauchlan J (2000) New insights into the mechanisms of lipid-body biogenesis in plants and other organisms. Biochem Soc Trans 28:710–711PubMedCrossRefGoogle Scholar
  342. Murphy DJ, Hernandez-Pinzon I, Patel K (2001) Roles of lipid bodies and lipid-body proteins in seeds and other tissues. J Plant Physiol 158:471–478CrossRefGoogle Scholar
  343. Murphy G, Rouse RL, Polk WW, Henk WG, Barker SA, Boudreaux MJ, Floyd ZE, Penn AL (2008) Combustion-derived hydrocarbons localize to lipid droplets in respiratory cells. Am J Respir Cell Mol Biol 38:532–540PubMedCrossRefGoogle Scholar
  344. Murphy S, Martin S, Parton RG (2009) Lipid droplet–organelle interactions: sharing the fats. Biochim Biophys Acta 1791:441–447PubMedGoogle Scholar
  345. Murphy S, Martin S, Parton RG (2010) Quantitative analysis of lipid droplet fusion: inefficient steady state fusion but rapid stimulation by chemical fusogens. PLoS One 5:e15030PubMedCrossRefGoogle Scholar
  346. Nabi IR, Le PU (2003) Caveolae/raft-dependent endocytosis. J Cell Biol 161:673–677PubMedCrossRefGoogle Scholar
  347. Naested H, Frandsen GI, Jauh GY, Hernandez-Pinzon I, Nielsen HB, Murphy DJ, Rogers JC, Mundy J (2000) Caleosins: Ca2+-binding proteins associated with lipid bodies. J Plant Mol Biol 44:463–476CrossRefGoogle Scholar
  348. Nakamura N, Banno Y, Tamiya-Koizumi K (2005) Arf1-dependent PLD1 is localized to oleic acid-induced lipid droplets in NIH3T3 cells. Biochem Biophys Res Commun 335:117–123PubMedCrossRefGoogle Scholar
  349. Nan X, Cheng JX, Xie XS (2003) Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy. J Lipid Res 44:2202–2208PubMedCrossRefGoogle Scholar
  350. Naslavsky N, Rahajeng J, Rapaport D, Horowitz M, Caplan S (2007) EHD1 regulates cholesterol homeostasis and lipid droplet storage. Biochem Biophys Res Commun 357:792–799PubMedCrossRefGoogle Scholar
  351. Neuberger T, Sreenivasulu N, Rokitta M, Rolletschek H, Göbel C, Rutten T, Radchuk Feussner I, Wobus U, Jakob P, Webb A, Ljudmilla Borisjuk L (2008) Quantitative imaging of oil storage in developing crop seeds. Plant Biotech J 6:31–45Google Scholar
  352. Nguyen LN, Nosanchuk JD (2011) Lipid droplet formation protects against gluco/lipotoxicity in Candida parapsilosis: an essential role of fatty acid desaturase Ole1. Cell Cycle 10(18):3159–3167Google Scholar
  353. Nguyen LN, Hamari Z, Kadereit B, Trofa D, Agovino M, Martinez LR, Gacser A, Silver DL, Nosanchuk JD (2011) Candida parapsilosis fat storage-inducing transmembrane (FIT) protein 2 regulates lipid droplet formation and impacts virulence. Microb Infect 13:663–672CrossRefGoogle Scholar
  354. Nishino N, Tamori Y, Tateya S, Kawaguchi T, Shibakusa T, Mizunoya W, Inoue K, Kitazawa R, Kitazawa S, Matsuki Y, Hiramatsu R, Masubuchi S, Omachi A, Kimura K, Saito M, Amo T, Ohta S, Yamaguchi T, Osumi T, Cheng J, Fujimoto T, Nakao H, Nakao K, Aiba A, Okamura H, Fushiki T, Kasuga M (2008) FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J Clin Invest 118:2808–2821PubMedGoogle Scholar
  355. Nykiforuk CL, Boothe JG, Murray EW, Keon RG, Goren HJ, Markley NA, Moloney MM (2006) Transgenic expression and recovery of biologically active recombinant human insulin from Arabidopsis thaliana seeds. Plant Biotechnol J 4:77–85PubMedCrossRefGoogle Scholar
  356. Oh P, McIntosh DP, Schnitzer JE (1998) Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J Cell Biol 14:101–114CrossRefGoogle Scholar
  357. Ohlrogge JN, Pollard MR, Stumpf PK (1978) Studies on biosynthesis of waxes by developing jojoba seed tissue. Lipids 13:203–210CrossRefGoogle Scholar
  358. Ohsaki Y, Cheng J, Fujita A, Tokumoto T, Fujimoto T (2006) Cytoplasmic lipid droplets are sites of convergence of proteasomal and autophagic degradation of apolipoprotein B. Mol Biol Cell 17:2674–2683PubMedCrossRefGoogle Scholar
  359. Ohsaki Y, Cheng J, Suzuki M, Fujita A, Fujimoto T (2008) Lipid droplets are arrested in the ER membrane by tight binding of lipidated apolipoprotein B-100. J Cell Sci 121:2415–2422PubMedCrossRefGoogle Scholar
  360. Ohsaki Y, Cheng J, Suzuki M, Shinohara Y, Fujita A, Fujimoto T (2009) Biogenesis of cytoplasmic lipid droplets: from the lipid ester globule in the membrane to the visible structure. Biochim Biophys Acta 1791:399–407PubMedGoogle Scholar
  361. Olofsson SO, Boren J (2005) Apolipoprotein B: a clinically important apolipoprotein which assembles atherogenic lipoproteins and promotes the development of atherosclerosis. J Intern Med 258:395–410PubMedCrossRefGoogle Scholar
  362. Olofsson SO, Boström P, Andersson L, Rutberg M, Levin M, Perman J, Boren J (2008) Triglyceride containing lipid droplets and lipid droplet-associated proteins. Curr Opin Lipidol 19:441–447PubMedCrossRefGoogle Scholar
  363. Olofsson SO, Boström P, Andersson L, Rutberg M, Perman J, Borén J (2009) Lipid droplets as dynamic organelles connecting storage and efflux of lipids. Biochim Biophys Acta 1791:448–458PubMedGoogle Scholar
  364. Olzmann JA, Kopito RR (2011) Lipid droplet formation is dispensable for endoplasmic reticulum-associated degradation. J Biol Chem 286:27872–27874PubMedCrossRefGoogle Scholar
  365. Orban T, Palczewska G, Palczewski K (2011) Retinyl ester storage particles (retinosomes) from the retinal pigmented epithelium resemble lipid droplets in other tissues. J Biol Chem 286:17248–17258PubMedCrossRefGoogle Scholar
  366. Orlicky DJ, Roede JR, Bales E, Greenwood C, Greenberg A, Petersen D, McManaman JL (2011) Chronic ethanol consumption in mice alters hepatocyte lipid droplet properties. Alcohol Clin Exp Res 35:1020–1033PubMedCrossRefGoogle Scholar
  367. Öst A, Ortegren U, Gustavsson J, Nystrom FH, Stralfors P (2005) Triacylglycerol is synthesized in a specific subclass of caveolae in primary adipocytes. J Biol Chem 280:5–8PubMedGoogle Scholar
  368. Ostermeyer AG, Paci JM, Zeng Y, Lublin DM, Munro S, Brown DA (2001) Accumulation of caveolin in the endoplasmic reticulum redirects the protein to lipid storage droplets. J Cell Biol 152:1071–1078PubMedCrossRefGoogle Scholar
  369. Ostermeyer AG, Ramcharan LT, Zeng Y, Lublin DM, Brown DA (2004) Role of the hydrophobic domain in targeting caveolin-1 to lipid droplets. J Cell Biol 164:69–78PubMedCrossRefGoogle Scholar
  370. Osuga J, Ishibashi S, Oka T, Yagyu H, Tozawa R, Fujimoto A, Shionoiri F, Yahagi N, Kraemer FB, Tsutsumi O, Yamada N (2000) Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. Proc Natl Acad Sci USA 97:787–792PubMedCrossRefGoogle Scholar
  371. Ozeki S, Cheng J, Tauchi-Sato K, Hatano N, Taniguchi H, Fujimoto T (2005) Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci 118:2601–2611PubMedCrossRefGoogle Scholar
  372. Pacheco P, Bozza FA, Gomes RN, Bozza M, Weller PF, Faria-Neto HC, Bozza PT (2002) Lipopolysaccharide-induced leukocyte lipid body formation in vivo: innate immunity elicited intracellular loci involved in eicosanoid metabolism. J Immunol 169:6498–6506PubMedGoogle Scholar
  373. Page WJ, Sherburne R, D’Elia L, Graham LL (1995) Poly(-hydroxybutyrate) extrusion from pleomorphic cells of Azotobacter vinelandii UWD. Can J Microbiol 41:22–31CrossRefGoogle Scholar
  374. Palacpac NMQ, Hiramine Y, Mi-ichi F, Torii M, Kita K, Hiramatsu R, Horii T, Mitamura T (2004) Developmental-stage-specific triacylglycerol biosynthesis, degradation and trafficking as lipid bodies in Plasmodium falciparum-infected erythrocytes. J Cell Sci 117:1469–1480PubMedCrossRefGoogle Scholar
  375. Park JH, Attardo GM, Hansen IA, Raikhel AS (2006) GATA factor translation is the final downstream step in the amino acid/target-of-rapamycin-mediated vitellogenin gene expression in the anautogenous mosquito Aedes aegypti. J Biol Chem 281:11167–11176PubMedCrossRefGoogle Scholar
  376. Parton RG, Simons K (2007) The multiple faces of caveoli. Nat Rev Mol Cell Biol 8:185–194PubMedCrossRefGoogle Scholar
  377. Partridge M, Murphy DJ (2009) Roles of a membrane-bound caleosin and putative peroxygenase in biotic and abiotic stress responses in Arabidopsis. Plant Physiol Biochem 47:796–806PubMedCrossRefGoogle Scholar
  378. Payne VA, Grimsey N, Tuthill A, Virtue S, Gray SL, Dalla Nora E, Semple RK, O’Rahilly S, Rochford JJ (2008) The human lipodystrophy gene BSCL2/seipin may be essential for normal adipocyte differentiation. Diabetes 57:2055–2060PubMedCrossRefGoogle Scholar
  379. Peled E, Leu S, Zarka A, Weiss M, Pick U, Khozin-Goldberg I, Boussiba S (2011) Isolation of a novel oil globule protein from the green alga Haematococcus pluvialis (Chlorophyceae). Lipids 46:851–861PubMedCrossRefGoogle Scholar
  380. Péterfy M, Phan J, Xu P, Reue K (2001) Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nat Genet 27:121–124PubMedCrossRefGoogle Scholar
  381. Pethe K, Alonso S, Biet F, Delogu G, Brennan MJ, Locht C, Menozzi FD (2001) The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature 412:190–194PubMedCrossRefGoogle Scholar
  382. Petschnigg J, Wolinski H, Kolb D, Zellnig G, Kurat CF, Natter K, Kohlwein SD (2009) Good fat, essential cellular requirements for triacylglycerol synthesis to maintain membrane homeostasis in yeast. J Biol Chem 284:30981–30993PubMedCrossRefGoogle Scholar
  383. Phan J, Reue K (2005) Lipin, a lipodystrophy and obesity gene. Cell Metab 1:73–83PubMedCrossRefGoogle Scholar
  384. Piffanelli P, Ross JHE, Murphy DJ (1997) Intra and extracellular lipid composition and associated gene expression patterns during pollen development in Brassica napus. Plant J 11:549–562PubMedCrossRefGoogle Scholar
  385. Pihakaski K, Pihakaski S, Karunen P, Kallio P (1987) Seasonal changes in leaf lipids of Diapensia lapponica, with special reference to storage lipid bodies. Nord J Bot 7:281–292CrossRefGoogle Scholar
  386. Ploegh HL (2007) A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. Nature 448:435–438PubMedCrossRefGoogle Scholar
  387. Pol A, Luetterforst R, Lindsay M, Heino S, Ikonen E, Parton RG (2001) A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J Cell Biol 152:1057–1070PubMedCrossRefGoogle Scholar
  388. Pol A, Martin S, Fernandez MA, Ingelmo-Torres M, Ferguson C, Enrich C, Parton RG (2005) Cholesterol and fatty acids regulate dynamic caveolin trafficking through the Golgi complex and between the cell surface and lipid bodies. Mol Biol Cell 16:2091–2105PubMedCrossRefGoogle Scholar
  389. Porfirova S, Bergmuller E, Tropf S, Lemke R, Dormann P (2002) Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc Natl Acad Sci USA 99:12495–12500PubMedCrossRefGoogle Scholar
  390. Pötter M, Madkour MH, Mayer F, Steinbüüchel A (2002) Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16. Microbiol 148:2413–2426Google Scholar
  391. Pötter M, Müller H, Reinecke F, Wieczorek R, Fricke F, Bowien B, Friedrich B, Steinbüchel A (2004) The complex structure of polyhydroxybutyrate (PHB) granules: four orthologous and paralogous phasins occur in Ralstonia eutropha. Microbiol 150:2301–2311CrossRefGoogle Scholar
  392. Pouvreau B, Baud S, Vernoud V, Morin V, Py C, Gendrot G, Pichon JP, Rouster J, Paul W, Rogowsky PM (2011) Duplicate maize Wrinkled1 transcription factors activate target genes involved in seed oil biosynthesis. Plant Physiol 156:674–686PubMedCrossRefGoogle Scholar
  393. Pozueta-Romero J, Rafia F, Houlne G, Cheniclet C, Carde JP, Schantz ML, Schantz R (1997) A ubiquitous plant housekeeping gene, PAP, encodes a major protein component of bell pepper chromoplasts. Plant Physiol 115:1185–1194PubMedCrossRefGoogle Scholar
  394. Pruvot G, Cuine S, Peltier G, Rey P (1996a) Characterization of a novel drought-induced 34-kDa protein located in the thylakoids of Solanum tuberosum L. plants. Planta 198:471–479PubMedCrossRefGoogle Scholar
  395. Pruvot G, Massimino J, Peltier G, Rey P (1996b) Effects of low temperature, high salinity and exogenous ABA on the synthesis of two chloroplastic drought-induced proteins in Solanum tuberosum. Physiol Plant 97:123–131CrossRefGoogle Scholar
  396. Puigserver P, Kahn CR (2008) Mammalian metabolism in aging. In: Guarente LP, Partridge L, Wallace DC (eds) Molecular biology of aging. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 545–574Google Scholar
  397. Pulido MR, Diaz-Ruiz A, Jimenez-Gomez Y, Garcia-Navarro S, Gracia-Navarro F, Tinahones F, Lopez-Miranda J, Fruhbeck G, Vazquez-Martinez R, Malagon MM (2011) Rab18 dynamics in adipocytes in relation to lipogenesis, lipolysis and obesity. PLoS One 6:10.1371CrossRefGoogle Scholar
  398. Puri V, Czech MP (2008) Lipid droplets: FSP27 knockout enhances their sizzle. J Clin Invest 118:2693–2696PubMedGoogle Scholar
  399. Puri V, Konda S, Ranjit S, Aouadi M, Chawla A, Chouinard M, Chakladar A, Czech MP (2007) Fat-specific protein 27, a novel lipid droplet protein that enhances triglyceride storage. J Biol Chem 282:34213–34218PubMedCrossRefGoogle Scholar
  400. Puri V, Ranjit S, Konda S, Nicoloro SM, Straubhaar J, Chawla A, Chouinard M, Lin C, Burkart A, Corvera S, Perugi RA, Czech MP (2008) Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc Natl Acad Sci USA 105:7833–7838PubMedCrossRefGoogle Scholar
  401. Purkrtova Z, d'Andrea S, Jolivet P, Lipovova P, Kralova B, Kodicek M, Chardot T (2007) Structural properties of caleosin: a MS and CD study. Arch Biochem Biophys 464:335–343PubMedCrossRefGoogle Scholar
  402. Quesada E, Béjar V, Ferrer MR, Calvo C, Llamas I, Martínez-Checa F, Arias S, Ruiz-García C, Páez R, Martínez-Cánovas J, Del Moral A (2004) Moderately halophilic, exopolysaccharide-producing bacteria. In: Ventosa A (ed) Halophilic microorganisms. Springer, Berlin, pp 297–314Google Scholar
  403. Quettier AL, Eastmond PJ (2009) Storage oil hydrolysis during early seedling growth. Plant Physiol Biochem 47:485–490PubMedCrossRefGoogle Scholar
  404. Quillaguamán J, Delgado O, Mattiasson B, Hatti-Kaul R (2006) Poly(ß-hydroxybutyrate) production by a moderate halophile, Halomonas boliviensis LC1. Enz Microbial Technol 38:148–154CrossRefGoogle Scholar
  405. Quillaguamán J, Doan-Van T, Guzmán H, Guzmán D, Martin J, Everest A, Hatti-Kaul R (2008) Poly(ß-hydroxybutyrate) production by Halomonas boliviensis in fed-batch culture. Appl Microbiol Biotechnol 78:227–232PubMedCrossRefGoogle Scholar
  406. Quillaguamán J, Guzmán H, Doan-Van T, Hatti-Kaul R (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 85:1687–1696PubMedCrossRefGoogle Scholar
  407. Quiroga AD, Lehner R (2011) Role of endoplasmic reticulum neutral lipid hydrolases. Trends Endocrinol Metab 22:218–225PubMedCrossRefGoogle Scholar
  408. Rajab A, Straub V, McCann LJ, Seelow D, Varon R, Barresi R, Schulze A, Lucke B, Lutzkendorf S, Karbasiyan M, Bachmann S, Spuler S, Schuelke M (2010) Fatal cardiac arrhythmia and long-qt syndrome in a new form of congenital generalized lipodystrophy with muscle rippling (cgl4) due to ptrf-cavin mutations. PLoS Genet 6:e1000874PubMedCrossRefGoogle Scholar
  409. Rajendran L, Le Lay S, Illges H (2007) Raft association and lipid droplet targeting of flotillins are independent of caveolin. Biol Chem 388:307–314PubMedCrossRefGoogle Scholar
  410. Rehm BH, Steinbüchel A (1999) Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macromol 25:3–19PubMedCrossRefGoogle Scholar
  411. Ricquier D (2010) Biology of brown adipose tissue: view from the chair. Int J Obesity 34:S3–S6CrossRefGoogle Scholar
  412. Riding RT, Little CHA (1984) Anatomy and histochemistry of Abies balsamea cambial zone cells during the onset and breaking of dormancy. Can J Bot 62:2570–2579CrossRefGoogle Scholar
  413. Rinia HA, Burger KNJ, Bonn M, Müller M (2008) Label-free cellular imaging of lipid composition and packing of individual lipid droplets using multiplex CARS microscopy. Biophys J 95:4908–4914PubMedCrossRefGoogle Scholar
  414. Rinne PLH, Welling A, Kaikuranta P (1998) Onset of freezing tolerance in birch (Betula pubescens Ehrh) involves LEA proteins and osmoregulation and is impaired in an ABA-deficient genotype. Plant Cell Environ 21:601–611CrossRefGoogle Scholar
  415. Rinne PLH, Kaikuranta PM, van der Schoot C (2002) The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. Plant J 26:249–264CrossRefGoogle Scholar
  416. Rinne PLH, Ruonala R, Ripel L, van der Schoot C (2008) Dormancy release-proteins in the shoot apical meristem of populus. Physiol Plant S133:P06–P047Google Scholar
  417. Robenek MJ, Severs NJ, Schlattmann K, Plenz G, Zimmer K-P, Troyer D, Robenek H (2004) Lipids partition caveolin-1 from ER membranes into lipid droplets: updating the model of lipid droplet biogenesis. FASEB J 18:866–868PubMedGoogle Scholar
  418. Robenek H, Robenek MJ, Buers I, Lorkowski S, Hofnagel O, Troyer D, Severs NJ (2005a) Lipid droplets gain PAT family proteins by interaction with specialized plasma membrane domains. J Biol Chem 280:26330–26338PubMedCrossRefGoogle Scholar
  419. Robenek H, Robenek MJ, Troyer D (2005b) PAT family proteins pervade lipid droplet cores. J Lipid Res 46:1331–1338PubMedCrossRefGoogle Scholar
  420. Robenek H, Hofnagel O, Buers I, Robenek MJ, Troyer D, Severs NJ (2006) Adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis. J Cell Sci 119:4215–4224PubMedCrossRefGoogle Scholar
  421. Robenek H, Buers I, Robenek MJ, Hofnagel O, Ruebel A, Troyer D, Severs NJ (2011) Topography of lipid droplet-associated proteins: insights from freeze-fracture replica immunogold labeling. J Lipids Article 2011:ID 409371Google Scholar
  422. Rodrigo MP, Findlay K, Lopez-Villalobos A, Yeung EC, Nykiforuk CL, Moloney MM (2006) The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis. Plant Cell 18:1961–1974CrossRefGoogle Scholar
  423. Roingeard P, Hourioux C, Blanchard E, Prensier G (2008) Hepatitis C virus budding at lipid droplet-associated ER membrane visualized by 3D electron microscopy. Histochem Cell Biol 13:561–566CrossRefGoogle Scholar
  424. Rosen ED, MacDougald OA (2006) Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7:885–896PubMedCrossRefGoogle Scholar
  425. Rudolph M, Schlereth A, Körner M, Feussner K, Berndt E, Melzer M, Hornung E, Feussner I (2011) The lipoxygenase dependent oxygenation of lipid body membranes is promoted by a patatin-type phospholipase in cucumber cotyledons. J Exp Bot 62:749–760PubMedCrossRefGoogle Scholar
  426. Ruonala R, Rinne PLH, Baghour M, Moritz T, Tuominen H, Kangasjärvi J (2006) Transitions in the functioning of the shoot apical meristem in birch (Betula pendula) involves ethylene. Plant J 46:628–640PubMedCrossRefGoogle Scholar
  427. Russell AP (2004) Lipotoxicity: the obese and endurance-trained paradox. Int J Obes Relat Metab Disord 28:S66–S71PubMedCrossRefGoogle Scholar
  428. Samsa MM, Mondotte JA, Iglesias NG, Assuncao-Miranda I, Barbosa-Lima G, Da Poian AT, Bozza PT, Gamarnik AV (2009) Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog 5:e1000632PubMedCrossRefGoogle Scholar
  429. Sanjaya DTP, Weise SE, Benning C (2011) Increasing the energy density of vegetative tissues by diverting carbon from starch to oil biosynthesis in transgenic Arabidopsis. Plant Biotech J 9:874–883CrossRefGoogle Scholar
  430. Santos-Rosa H, Leung J, Grimsey N, Peak-Chew S, Siniossoglou S (2005) The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth. EMBO J 24:1931–1941PubMedCrossRefGoogle Scholar
  431. Sargent JA, Osborne DJ (1980) A comparative study of the fine structure of coleorhiza and root cells during the early hours of germination of rye embryos. Protoplasma 104:91–103CrossRefGoogle Scholar
  432. Sarmiento C, Ross JH, Herman E, Murphy DJ (1997) Expression and subcellular targeting of a soybean oleosin in transgenic rapeseed. Implications for the mechanism of oil-body formation in seeds. Plant J 11:783–796PubMedCrossRefGoogle Scholar
  433. Schein M, Yang Z, Mitchell-Olds T, Schmid K (2004) Rapid evolution of a pollen-specific oleosin-like gene family from Arabidopsis thaliana and closely related species. Mol Biol Evol 21:659–669PubMedCrossRefGoogle Scholar
  434. Scherzer CR, Feany MB (2004) Yeast genetics targets lipids in Parkinson’s disease. Trends Genet 20:273–277PubMedCrossRefGoogle Scholar
  435. Schimek C, Eibel P, Grolig F, Horie T, Ootaki T, Galland P (1999) Gravitropism in Phycomyces: a role for sedimenting protein crystals and floating lipid globules. Planta 210:132–142PubMedCrossRefGoogle Scholar
  436. Schmidt MA, Herman EM (2009) Suppression of soybean oleosin produces micro-oil bodies that aggregate into oil body/ER complexes. Mol Plant 1:910–924CrossRefGoogle Scholar
  437. Schneider EF, Seaman WL (1977) Ontogeny of lipid bodies in the endoplasmic reticulum of Fusarium sulphureum. Can J Microbiol 23:190–196PubMedCrossRefGoogle Scholar
  438. Schultheiss D, Handrick R, Jendrossek D, Hanzlik M, Schüler D (2005) The presumptive magnetosome protein Mms16 is a poly(3-hydroxybutyrate) granule-bound protein (phasin) in Magnetospirillum gryphiswaldense. J Bacteriol 187:2416–2425PubMedCrossRefGoogle Scholar
  439. Scott RW, Winichayakul S, Roldan M, Cookson R, Willingham M, Castle M, Pueschel R, Peng CC, Tzen JTC, Roberts NJ (2010) Elevation of oil body integrity and emulsion stability by polyoleosins, multiple oleosin units joined in tandem head-to-tail fusions. Plant Biotech J 8:912–927CrossRefGoogle Scholar
  440. Shah J (2005) Lipid, lipases and lipid-modifying enzymes in plant disease resistance. Ann Rev Phytopathol 43:229–260CrossRefGoogle Scholar
  441. Shah J, Chaturvedi R (2008) Lipid signals in plant–pathogen interactions. Ann Plant Rev 34:292–333Google Scholar
  442. Sheehan J (2009) Engineering direct conversion of CO2 to biofuel. Nat Biotechnol 27:1128–1129PubMedCrossRefGoogle Scholar
  443. Shelness GS, Ledford AS (2005) Evolution and mechanism of apolipoprotein B-containing lipoprotein assembly. Curr Opin Lipidol 16:325–332PubMedCrossRefGoogle Scholar
  444. Shen B, Allen WB, Zheng P, Li C, Glassman K, Ranch J, Nubel D, Tarczynski MC (2010) Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol 153:980–987PubMedCrossRefGoogle Scholar
  445. Shimada TL, Nara-Nishimura I (2010) Oil-body-membrane proteins and their physiological functions in plants. Biol Pharm Bull 33:360–363PubMedCrossRefGoogle Scholar
  446. Shimada TL, Shimada T, Takahashi H, Fukao Y, Hara-Nishimura I (2008) A novel role for oleosins in freezing tolerance of oilseeds in Arabidopsis thaliana. Plant J 55:798–809PubMedCrossRefGoogle Scholar
  447. Shubeita GT, Tran SL, Xu J, Vershinin M, Cermelli S, Cotton SL, Welte MA, Gross SP (2008) Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets. Cell 135:1098–1107PubMedCrossRefGoogle Scholar
  448. Simkin AJ, Gaffé J, Alcaraz JP, Carde JP, Bramley PM, Fraser PD, Kuntz M (2007) Fibrillin influence on plastid ultrastructure and pigment content in tomato fruit. Phytochem 68:1545–1556CrossRefGoogle Scholar
  449. Slater S, Mitsky TA, Houmiel KL, Hao M, Reiser SE, Taylor NB, Tran M, Valentin HE, Rodriguez DJ, Stone DA, Padgette SR, Kishore G, Gruys KJ (1999) Metabolic engineering of Arabidopsis and Brassica for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production. Nat Biotechnol 17:1011–1016PubMedCrossRefGoogle Scholar
  450. Slocombe SP, Cornah J, Pinfield-Wells H, Soady K, Zhang Q, Gilday A, Dyer JM, Graham IA (2009) Oil accumulation in leaves directed by modification of fatty acid breakdown and lipid synthesis pathways. Plant Biotech J 7:694–703CrossRefGoogle Scholar
  451. Smirnova E, Goldberg EB, Makarova KS, Lin L, Brown WJ, Jackson CL (2006) ATGL has a key role in lipid droplet/adiposome degradation in mammalian cells. EMBO Rep 7:106–113PubMedCrossRefGoogle Scholar
  452. Snell KD, Peoples OP (2002) Polyhydroxyalkanoate polymers and their production in transgenic plants. Metabol Eng 4:29–40CrossRefGoogle Scholar
  453. Somwar R, Roberts CT, Varlamov O (2011) Live-cell imaging demonstrates rapid cargo exchange between lipid droplets in adipocytes. FEBS Lett 585:1946–1950PubMedCrossRefGoogle Scholar
  454. Sorgi CA, Secatto A, Fontanari C, Turato WM, Belangér C, de Medeiros AI, Kashima S, Marleau S, Covas DT, Bozza PT, Faccioli LH (2009) Histoplasma capsulatum cell wall ß-glucan induces lipid body formation through CD18, TLR2, and Dectin-1 receptors: correlation with leukotriene B4 generation and role in HIV-1 infection. J Immunol 182:4025–4035PubMedCrossRefGoogle Scholar
  455. Spandl J, Lohmann D, Kuerschner L, Moessinger C, Thiele C (2011) Ancient ubiquitous protein 1 (AUP1) localizes to lipid droplets and binds the E2 ubiquitin conjugase G2 (Ube2g2) via its G2 binding region. J Biol Chem 286:5599–5606PubMedCrossRefGoogle Scholar
  456. Sparkes IA, Frigerio L, Tolley N, Hawes C (2009) The plant endoplasmic reticulum: a cell-wide web. Biochem J 423:145–155PubMedCrossRefGoogle Scholar
  457. Steinbüchel A (2007) Analysis of storage lipid accumulation in Alcanivorax borkumensis: evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol 189:918–928PubMedCrossRefGoogle Scholar
  458. Steinbüchel A, Füchtenbusch B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol 16:419–427PubMedCrossRefGoogle Scholar
  459. Stephens E, Ross IL, Mussgnug JH, Wagner LD, Borowitzka MA, Posten C, Kruse O, Hankame B (2010) Future prospects of microalgal biofuel production systems. Trends Plant Sci 15:554–564PubMedCrossRefGoogle Scholar
  460. Stetter KO (2006) Hyperthermophiles in the history of life. Philos Trans R Soc Lond B Biol Sci 361:1837–1842PubMedCrossRefGoogle Scholar
  461. Sztalryd C, Bell M, Lu X, Mertz P, Hickenbottom S, Chang BH, Chan L, Kimmel AR, Londos C (2006) Functional compensation for adipose differentiation-related protein (ADFP) by TIP47 in an adfp nullembryonic cell line. J Biol Chem 281:34341–34348PubMedCrossRefGoogle Scholar
  462. Szymanski KM, Binns D, Bartz R, Grishin NV, Li WP, Agarwal AK, Garg A, Anderson RG, Goodman JM (2007) The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc Natl Acad Sci USA 104:20890–20895PubMedCrossRefGoogle Scholar
  463. Takahashi S, Katagiri T, Yamaguchi-Shinozaki K, Shinozaki K (2000) An Arabidopsis gene encoding a Ca2+-binding protein is induced by abscisic acid during dehydration. Plant Cell Physiol 41:898–903PubMedCrossRefGoogle Scholar
  464. Tansey JT, Sztalryd C, Gruia-Gray J, Roush DL, Zee JV, Gavrilova O, Reitman ML, Deng CX, Li C, Kimmel AR, Londos C (2001) Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. Proc Natl Acad Sci USA 98:6494–6499PubMedCrossRefGoogle Scholar
  465. Targett-Adams P, Chambers D, Gledhill S, Hope RG, Johannes JF, Girod A, McLauchlan J (2003) Live cell analysis and targeting of the lipid droplet-binding adipocyte differentiation-related protein. J Biol Chem 278:15998–16007PubMedCrossRefGoogle Scholar
  466. Teixeira L, Rabouille C, Rorth P, Ephrussi A, Vanzo NF (2003) Drosophila Perilipin/ADRP homologue Lsd2 regulates lipid metabolism. Mech Dev 120:1071–1081PubMedCrossRefGoogle Scholar
  467. Tessmer N, König S, Malkus U, Reichelt R, Pötter M, Steinbüchel A (2007) Heat-shock protein HspA mimics the function of phasins sensu strictu in recombinant strains of Escherichia coli accumulating polythioesters or polyhydroxyalkanoates. Microbiol 153:366–374CrossRefGoogle Scholar
  468. Than NG, Sumegi B, Bellyei S, Berki T, Szekeres G, Janaky T, Szigeti A, Bohn H, Than GN (2003) Lipid droplet and milk lipid globule membrane associated placental protein 17b (PP17b) is involved in apoptotic and differentiation processes of human epithelial cervical carcinoma cells. Eur J Biochem 270:1176–1188PubMedCrossRefGoogle Scholar
  469. Thiele C, Spandl J (2008) Cell biology of lipid droplets. Curr Opin Cell Biol 20:378–385PubMedCrossRefGoogle Scholar
  470. Thines E, Weber RW, Talbot NJ (2000) MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell 12:1703–1718PubMedGoogle Scholar
  471. Tian Y, Bi J, Shui G, Liu Z, Xiang Y, Liu Y, Wenk MR, Yang H, Huang X (2011) Tissue-autonomous function of Drosophila seipin in preventing ectopic lipid droplet formation. PLoS Genet 7:e1001364PubMedCrossRefGoogle Scholar
  472. Ting JTL, Wu SSH, Ratnayake C, Huang AHC (1998) Constituents of the tapetosomes and elaioplasts in Brassica campestris and their degradation and retention during microsporogenesis. Plant J 16:541–551PubMedCrossRefGoogle Scholar
  473. Tnani H, López I, Jouenne T, Vicient CM (2011) Protein composition analysis of oil bodies from maize embryos during germination. J Plant Physiol 168:510–513PubMedCrossRefGoogle Scholar
  474. Toh SY, Gong J, Du G, Li JZ, Yang S, Ye J, Yao H, Zhang Y, Xue B, Li Q, Yang H, Wen Z, Li P (2008) Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice. PLoS One 3:e2890PubMedCrossRefGoogle Scholar
  475. Toorop PE, Barroco RM, Engler G, Groot SP, Hilhorst HW (2005) Differentially expressed genes associated with dormancy or germination of Arabidopsis thaliana seeds. Planta 221:637–647PubMedCrossRefGoogle Scholar
  476. Tranbarger TT, Dussert S, Joët T, Argout X, Summo M, Champion A, Cros D, Omore A, Nouy B, Morcillo F (2011) Regulatory mechanisms underlying oil palm fruit mesocarp maturation, ripening and functional specialization in lipid and carotenoid metabolism. Plant Physiol 156:564–584PubMedCrossRefGoogle Scholar
  477. Tsitsigiannis D, Keller NP (2007) Oxylipins as developmental and host–fungal communication signals. Trends Microbiol 16:109–117CrossRefGoogle Scholar
  478. Tsitsigiannis DI, Zarnowski R, Keller NP (2004) The lipid body protein, PpoA, coordinates sexual and asexual sporulation in Aspergillus nidulans. J Biol Chem 279:11344–11353PubMedCrossRefGoogle Scholar
  479. Turró S, Ingelmo-Torres M, Estanyol JM, Tebar F, Fernandez MA, Albor CV, Gaus K, Grewal T, Enrich C, Pol A (2006) Identification and characterization of associated with lipid droplet protein 1: a novel membrane-associated protein that resides on hepatic lipid droplets. Traffic 7:1254–1269PubMedCrossRefGoogle Scholar
  480. Uchino K, Saito T, Jendrossek D (2008) Poly(3-hydroxybutyrate) (PHB) depolymerase PhaZa1 is involved in mobilization of accumulated PHB in Ralstonia eutropha H16. Appl Environ Microbiol 74:1058–1063PubMedCrossRefGoogle Scholar
  481. Uittenbogaard A, Everson WV, Matveev SV, Smart EJ (2002) Cholesteryl ester is transported from caveolae to internal membranes as part of a caveolin–annexin II lipid–protein complex. J Biol Chem 277:4925–4931PubMedCrossRefGoogle Scholar
  482. Umlauf E, Csaszar E, Moertelmaier M, Schuetz GJ, Parton RG, Prohaska R (2004) Association of stomatin with lipid bodies. J Biol Chem 279:23699–23709PubMedCrossRefGoogle Scholar
  483. Unger RH (2002) Lipotoxic diseases. Annu Rev Med 53:319–336PubMedCrossRefGoogle Scholar
  484. Unger RH, Scherer PE (2010) Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity. Trends Endocrinol Metab 21:345–352PubMedCrossRefGoogle Scholar
  485. Valdearcos M, Esquinas E, Meana C, Gil-de-Gómez L, Guijas C, Balsinde J, Balboa MA (2011) Subcellular localization and role of Lipin-1 in human macrophages. J Immunol 186:6004–6013PubMedCrossRefGoogle Scholar
  486. Van der Schoot C, Rinne PLH (2011) Dormancy cycling at the shoot apical meristem: transitioning between self-organization and self-arrest. Plant Sci 180:120–131PubMedCrossRefGoogle Scholar
  487. Van Herpen NA, Schrauwen-Hinderling VB (2008) Lipid accumulation in non- adipose tissue and lipotoxicity. Physiol Behav 94:231–241PubMedCrossRefGoogle Scholar
  488. Van Meer G, de Kroon AIMP (2011) Lipid map of the mammalian cell. J Cell Sci 124:5–8PubMedCrossRefGoogle Scholar
  489. Van Meer G, Voelker DG, Feignenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124PubMedCrossRefGoogle Scholar
  490. Vance DE, Vance JE (2008) Phospholipid biosynthesis in eukaryotes. In: Vance DE, Vance JE (eds) Biochemistry of lipids, lipoproteins and membranes, 5th edn. Elsevier, Amsterdam, pp 213–244CrossRefGoogle Scholar
  491. Vandana S, Bhatla SC (2006) Evidence for the probable oil body association of a thiol-protease, leading to oleosin degradation in sunflower seedling cotyledons. Plant Physiol Biochem 44:714–723PubMedCrossRefGoogle Scholar
  492. Vazquez GJ, Wieczoreck R, Steinbüchel A, Mendez BS (1996) Poly-(3-hydroxybutyrate) granules in Bacillus megaterium. Isolation and analysis of associated proteins. Rev Argent Microbiol 28:118–122PubMedGoogle Scholar
  493. Vereb G, Szöllösi J, Matkó J, Nagy P, Farkas T, Vıgh L, Mátyus L, Waldmann TA, Damjanovich S (2003) Dynamic, yet structured: the cell membrane three decades after the Singer–Nicolson model. Proc Natl Acad Sci USA 100:8053–8058PubMedCrossRefGoogle Scholar
  494. Vidi PA, Kanwischer M, Baginsky S, Austin JR, Csucs G, Dörmann P, Kessler F, Bréhélin C (2006) Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles. J Biol Chem 281:11225–11234PubMedCrossRefGoogle Scholar
  495. Vidi PA, Kessler F, Bréhélin C (2007) Plastoglobules: a new address for targeting recombinant proteins in the chloroplast. BMC Biotechnol 7:4PubMedCrossRefGoogle Scholar
  496. Vielemeyer O, McIntosh MT, Joiner KA, Coppens I (2004) Neutral lipid synthesis and storage in the intraerythrocytic stages of Plasmodium falciparum. Mol Biochem Parasitol 135:197–209PubMedCrossRefGoogle Scholar
  497. Vigil EL, Steere RL, Wergin WP, Christiansen MN (1985) Tissue preparation and fine structure of radicle apex from cotton seeds. Protoplasma 129:168–177CrossRefGoogle Scholar
  498. Vigouroux C, Caron-Debarle M, Le Dour C, Magré J, Capeau J (2011) Molecular mechanisms of human lipodystrophies: from adipocyte lipid droplet to oxidative stress and lipotoxicity. Int J Biochem Cell Biol 43:862–876PubMedCrossRefGoogle Scholar
  499. Villena JA, Roy S, Sarkadi-Nagy E, Kim KH, Sul HS (2004) Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J Biol Chem 279:47066–47075PubMedCrossRefGoogle Scholar
  500. Vishnevetsky M, Ovadis M, Itzhaki H, Levy M, Libal Weksler Y, Adam Z, Vainstein A (1996) Molecular cloning of a carotenoid-associated protein from Cucumis sativa corollas: homologous genes involved in carotenoid biosynthesis. Plant J 10:1111–1118PubMedCrossRefGoogle Scholar
  501. Volk GM, Crane J, Caspersen AM, Hill LM, Gardner C, Walters C (2006) Massive cellular disruption occurs during early imbibition of Cuphea seeds containing crystallized triacylglycerols. Planta 224:1415–1426PubMedCrossRefGoogle Scholar
  502. Volonte D, Galbiati F, Li S, Nishiyama K, Okamoto T, Lisanti MP (1999) Flotillins/cavatellins are differentially expressed in cells and tissues and form a hetero-oligomeric complex with caveolins in vivo. Characterization and epitope mapping of a novel flotillin-1 monoclonal antibody probe. J Biol Chem 274:12702–12709PubMedCrossRefGoogle Scholar
  503. Von Wettstein D (2001) Discovery of a protein required for photosynthetic membrane assembly. Proc Natl Acad Sci USA 98:3633–3635CrossRefGoogle Scholar
  504. Wahlroos T, Soukka J, Denesyuk A, Wahlroos R, Korpela T, Kilby NJ (2003) Oleosin expression and trafficking during oil body biogenesis in tobacco leaf cells. Genesis 35:125–132PubMedCrossRefGoogle Scholar
  505. Wältermann M, Steinbüchel A (2005) Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol 187:3607–3619PubMedCrossRefGoogle Scholar
  506. Wältermann M, Hinz A, Robenek H, Troyer D, Reichelt R, Malkus U, Galla HJ, Kalscheuer R, Stoveken T, von Landenberg P, Steinbüchel A (2005) Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Mol Microbiol 55:750–763PubMedCrossRefGoogle Scholar
  507. Walther TC, Farese RV (2009) The life of lipid droplets. Biochim Biophys Acta 1791:459–466PubMedGoogle Scholar
  508. Wan HC, Melo RC, Jin Z, Dvorak AM, Weller PF (2007) Roles and origins of leukocyte lipid bodies: proteomic and ultrastructural studies. FASEB J 21:167–178PubMedCrossRefGoogle Scholar
  509. Wang C, St Leger RJ (2007) The Metarhizium anisopliae perilipin homolog MPL1 regulates lipid metabolism, appressorial turgor pressure, and virulence. J Biol Chem 282:21110–21115PubMedCrossRefGoogle Scholar
  510. Wang H, Sztalryd C (2011) Oxidative tissue: perilipin 5 links storage with the furnace. Trends Endocrinol Metab 22:197–203PubMedCrossRefGoogle Scholar
  511. Wang MC, O’Rourke EJ, Ruvkun G (2008) Fat metabolism links germline stem cells and longevity in C. elegans. Science 322:957–960PubMedCrossRefGoogle Scholar
  512. Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryotic Cell 8:1856–1868PubMedCrossRefGoogle Scholar
  513. Watanabe T, Thayil A, Jesacher A, Grieve K, Debarre D, Wilson T, Booth M, Srinivas S (2010) Characterisation of the dynamic behaviour of lipid droplets in the early mouse embryo using adaptive harmonic generation microscopy. BMC Cell Biol 11:38PubMedCrossRefGoogle Scholar
  514. Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC (2003) α-synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278:25009–25013PubMedCrossRefGoogle Scholar
  515. Welte MA (2007) Proteins under new management: lipid droplets deliver. Trends Cell Biol 17:363–369PubMedCrossRefGoogle Scholar
  516. Welte MA (2009) Fat on the move: intracellular motion of lipid droplets. Biochem Soc Trans 37:991–996PubMedCrossRefGoogle Scholar
  517. Welte MA, Cermelli S, Griner J, Viera A, Guo Y, Kim DH, Gindhart JG, Gross SP (2005) Regulation of lipid-droplet transport by the Perilipin homologue LSD2. Curr Biol 15:1266–1275PubMedCrossRefGoogle Scholar
  518. Wetzel CLR, Jensen WA (1992) Studies of pollen maturation in cotton: the storage reserve accumulation phase. Sexual Plant Reprod 5:117–127CrossRefGoogle Scholar
  519. Whigham LD, Israel BA, Atkinson RL (2005) Adipogenic potential of multiple human adenoviruses in vivo and in vitro. Am J Physiol Regul Integr Comp Physiol 290:190–194CrossRefGoogle Scholar
  520. Whitfield HV (1992) The synthesis and utilisation of very-long chain fatty acids by developing seeds of nasturtium and other oilseeds. PhD thesis, University of East Anglia, Norwich, UKGoogle Scholar
  521. Wilson E (1896) The cell in development and inheritance. Macmillan, New YorkCrossRefGoogle Scholar
  522. Wolins N, Quaynor B, Skinner J, Schoenfish M, Tzekov A, Bickel P (2005) S3-12, adipophilin, and TIP47 package lipid in adipocytes. J Biol Chem 280:19146–19155PubMedCrossRefGoogle Scholar
  523. Wolins NE, Brasaemle DL, Bickel PE (2006a) A proposed model of fat packaging by exchangeable lipid droplet proteins. FEBS Lett 580:5484–5491PubMedCrossRefGoogle Scholar
  524. Wolins NE, Quaynor BK, Skinner JR, Tzekov A, Croce MA, Gropler MC, Varma V, Yao-Borengasser A, Rasouli N, Kern PA, Finck BN, Bickel PE (2006b) OXPAT/PAT-1 is a PPAR-induced lipid droplet protein that promotes fatty acid utilization. Diabetes 55:3418–3428PubMedCrossRefGoogle Scholar
  525. Wright LC, Djordjevic JT, Schibeci SD, Himmelreich U, Muljadi N, Williamson P, Lynch GW (2003) Detergent-resistant membrane fractions contribute to the total 1H NMR-visible lipid signal in cells. Eur J Biochem 270:2091–2100PubMedCrossRefGoogle Scholar
  526. Wu CC, Howell KE, Neville MC, Yates JR, McManaman JL (2000) Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells. Electrophoresis 21:3470–3482PubMedCrossRefGoogle Scholar
  527. Wu YY, Chou YR, Wang CS, Tseng TH, Chen LJ, Tzen JT (2010) Different effects on triacylglycerol packaging to oil bodies in transgenic rice seeds by specifically eliminating one of their two oleosin isoforms. Plant Physiol Biochem 48:81–89PubMedCrossRefGoogle Scholar
  528. Wymann MP, Schneiter R (2008) Lipid signalling in disease. Nature Rev Mol Cell Biol 9:162–176CrossRefGoogle Scholar
  529. Yang Y, Sulpice R, Himmelbach A, Meinhard M, Christmann A, Grill E (2006) Fibrillin expression is regulated by abscisic acid response regulators and is involved in abscisic acid-mediated photoprotection. Proc Natl Acad Sci USA 103:6061–6066PubMedCrossRefGoogle Scholar
  530. Yao M, Huang Y, Shioi K, Hattori K, Murakami T, Nakaigawa N, Kishida T, Nagashima Y, Kubota Y (2007) Expression of adipose differentiation-related protein: a predictor of cancer-specific survival in clear cell renal carcinoma. Clin Cancer Res 13:152–160PubMedCrossRefGoogle Scholar
  531. Yen CL, Stone SJ, Koliwad S, Harris C, Farese RV (2008) Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res 49:2283–2301PubMedCrossRefGoogle Scholar
  532. Ytterberg AJ, Peltier J, van Wijk KJ (2006) Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol 140:984–997PubMedCrossRefGoogle Scholar
  533. Yu W, Bozza PT, Tzizik DM, Gray JP, Cassara J, Dvorak AM, Weller PF (1998) Co-compartmentalization of MAP kinases and cytosolic phospholipase A2 at cytoplasmic arachidonate-rich lipid bodies. Am J Pathol 152:759–769PubMedGoogle Scholar
  534. Yu YV, Li Z, Rizzo NP, Einstein J, Welte MA (2011) Targeting the motor regulator Klar to lipid droplets. BMC Cell Biol 12:9PubMedCrossRefGoogle Scholar
  535. Zanghellini J, Ruckerbauer D, Wodlei F, von Grunberg HH, Jungreuthmayer C (2010a) Phospholipid demixing: molecular interpretation of lipid droplet biogenesis. Advan Planar Lipid Bilayers Liposomes 11:1–28CrossRefGoogle Scholar
  536. Zanghellini J, Wodlei F, von Grunberg HH (2010b) Phospholipid demixing and the birth of a lipid droplet. J Theor Biol 264:952–961PubMedCrossRefGoogle Scholar
  537. Zehmer JK, Bartz R, Liu P, Anderson RG (2008) Identification of a novel N-terminal hydrophobic sequence that targets proteins to lipid droplets. J Cell Sci 121:1852–1860PubMedCrossRefGoogle Scholar
  538. Zehmer JK, Bartz R, Bisel B, Liu P, Seemann J, Anderson RG (2009a) Targeting sequences of UBXD8 and AAM-B reveal that the ER has a direct role in the emergence and regression of lipid droplets. J Cell Sci 122:3694–3702PubMedCrossRefGoogle Scholar
  539. Zehmer JK, Huang Y, Peng G, Anderson RG, Liu P (2009b) A role for lipid droplets in inter-membrane lipid traffic. Proteomics 9:914–921PubMedCrossRefGoogle Scholar
  540. Zhang SO, Box AC, Xu N, Le Men J, Yu J, Guo F, Trimble R, Mak HY (2010a) Genetic and dietary regulation of lipid droplet expansion in Caenorhabditis elegans. Proc Natl Acad Sci USA 107:4640–4645PubMedCrossRefGoogle Scholar
  541. Zhang SO, Trimble R, Guo F, Mak HY (2010b) Lipid droplets as ubiquitous fat storage organelles in C. elegans. BMC Cell Biol 11:96PubMedCrossRefGoogle Scholar
  542. Zhou Z, Yon Toh S, Chen Z, Guo K, Ng CP, Ponniah S, Lin SC, Hong W, Li P (2003) Cidea-deficient mice have lean phenotype and are resistant to obesity. Nat Genet 35:49–56PubMedCrossRefGoogle Scholar
  543. Zimmerberg J, Kozlov MM (2006) How proteins produce membrane curvature. Nat Rev Mol Cell Biol 7:9–19PubMedCrossRefGoogle Scholar
  544. Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383–1386PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Division of Biological SciencesUniversity of GlamorganCardiffUK

Personalised recommendations