, Volume 249, Issue 3, pp 445–457 | Cite as

Circadian clock-dependent gating in ABA signalling networks

  • David Seung
  • Juan Pablo Matte Risopatron
  • Brian Joseph JonesEmail author
  • Jan Marc
Review Article


Plant growth and development are intimately attuned to fluctuations in environmental variables such as light, temperature and water availability. A broad range of signalling and dynamic response mechanisms allows them to adjust their physiology so that growth and reproductive capacity are optimised for the prevailing conditions. Many of the response mechanisms are mediated by the plant hormones. The hormone abscisic acid (ABA) plays a dominant role in fundamental processes such as seed dormancy and germination, regulation of stomatal movements and enhancing drought tolerance in response to the osmotic stresses that result from water deficit, salinity and freezing. Whereas plants maintain a constant vigilance, there is emerging evidence that the capacity to respond is gated by the circadian clock so that it varies with diurnal fluctuations in light, temperature and water status. Clock regulation enables plants to anticipate regular diurnal fluctuations and thereby presumably to maximise metabolic efficiency. Circadian clock-dependent gating appears to regulate the ABA signalling network at numerous points, including metabolism, transport, perception and activity of the hormone. In this review, we summarise the basic principles and recent progress in elucidating the molecular mechanisms of circadian gating of the ABA response network and how it can affect fundamental processes in plant growth and development.


ABAR/CHLH ABRE Abscisic acid CBF/DREB1 Circadian clock gating PIF PRR PYR/PYL/RCAR TOC1 



This work was supported in part by a Ph.D. scholarship for Matte J.P. by the Advanced Human Capital Program, of the National Commission for Scientific and Technological Research (CONICYT) Bicentennial Becas-Chile Scholarship.

Conflict of interest

The authors declare that they have no conflict of interest.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Supplementary material

709_2011_304_MOESM1_ESM.xlsx (67 kb)
Supplemental Table 1 Circadian regulated early ABA responsive genes. Genes shown to be upregulated by ABA were sourced from Genevestigator (Exp. ID: At-00420) from work published by Mizoguchi et al. (2010). Col-0 plants were grown on GM agar (16 h light/8 h dark, 22°C) for 2 weeks and subsequently treated with 100 μM ABA for 1 h. ABA responsive genes were analysed for circadian regulation using the Diurnal Search Tool ( to identify circadian regulation [LL23(LDHH)] (Mockler et al. 2007). Time 0 lights on. (XLSX 66 kb)


  1. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15(1):63PubMedCrossRefGoogle Scholar
  2. Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellins metabolism. Plant Cell 20:2117–2129Google Scholar
  3. Acharya BR, Assmann SM (2009) Hormone interactions in stomatal function. Plant Mol Biol 69(4):451–462PubMedCrossRefGoogle Scholar
  4. Adie BAT, Perez-Perez J, Perez-Perez MM, Godoy M, Sanchez-Serrano JJ, Schmelz EA, Solano R (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19(5):1665PubMedCrossRefGoogle Scholar
  5. Arana MV, Marín-de la Rosa N, Maloof JN, Blázquez MA, Alabadí D (2011) Circadian oscillation of gibberellin signaling in Arabidopsis. Proc Natl Acad Sci U S A 108(22):9292–9297PubMedCrossRefGoogle Scholar
  6. Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148(1):6PubMedCrossRefGoogle Scholar
  7. Baudry A, Ito S, Song YH, Strait AA, Kiba T, Lu S, Henriques R, Pruneda-Paz JL, Chua N-H, Tobin EM (2010) F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression. Plant Cell 22:606–622PubMedCrossRefGoogle Scholar
  8. Blasing OE, Gibon Y, Gunther M, Hohne M, Morcuende R, Osuna D, Thimm O, Usadel B, Scheible WR, Stitt M (2005) Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in arabidopsis. Plant Cell 17(12):3257–3281. doi: 10.1105/tpc.105.035261 PubMedCrossRefGoogle Scholar
  9. Cao FY, Yoshioka K, Desveaux D (2011) The roles of ABA in plant–pathogen interactions. J Plant Res. doi: 10.1007/s10265-011-0409-y
  10. Carles C, Bies-Etheve N, Aspart L, Leon-Kloosterziel KM, Koornneef M, Echeverria M, Delseny M (2002) Regulation of Arabidopsis thaliana Em genes: role of ABI5. Plant J 30(3):373–383PubMedCrossRefGoogle Scholar
  11. Castells E, Portoles S, Huang W, Mas P (2010) A functional connection between the clock component TOC1 and abscisic acid signalling pathways. Plant Signal Behav 5:409–411PubMedCrossRefGoogle Scholar
  12. Correia MJ, Pereira JS, Chaves MM, Rodrigues ML, Pacheco CA (1995) ABA xylem concentrations determine maximum daily leaf conductance of field-grown Vitis vinifera L. plants. Plant Cell Environ 18:511–521CrossRefGoogle Scholar
  13. Covington MF, Harmer SL (2007) The circadian clock regulates auxin signaling and responses in arabidopsis. PLoS Biol 5(8):e222. doi: 10.1371/journal.pbio.0050222 PubMedCrossRefGoogle Scholar
  14. Covington MF, Maloof JN, Straume M, Kay SA, Harmer SL (2008) Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol 9:R130PubMedCrossRefGoogle Scholar
  15. Cutler S, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signalling network. Annu Rev Plant Biol 61:651–679PubMedCrossRefGoogle Scholar
  16. Dai S, Wei X, Pei L, Thompson RL, Liu Y, Heard JE, Ruff TG, Beachy RN (2011) BROTHER OF LUX ARRHYTHMO (BOA) is a component of the Arabidopsis circadian clock. Plant Cell 23:961–972PubMedCrossRefGoogle Scholar
  17. Dalchau N, Baek SJ, Briggs HM, Robertson FC, Dodd AN, Gardner MJ, Stancombe MA, Haydon MJ, Stan G-B, Concalves JM, Webb AAR (2011) The circadian oscillator gene GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to sucrose. Proc Natl Acad Sci U S A 108:5104–5109PubMedCrossRefGoogle Scholar
  18. De Montaigu A, Tóth R, Coupland G (2010) Plant development goes like clockwork. Trends Genet 26:296–306PubMedCrossRefGoogle Scholar
  19. Dodd AN, Love J, Webb AA (2005a) The plant clock shows its metal: circadian regulation of cytosolic free Ca2+. Trends Plant Sci 10(1):15–21PubMedCrossRefGoogle Scholar
  20. Dodd AN, Salathia N, Hall A, Kevei E, Roth R, Nagy F, Hibberd JM, Millar AJ, Webb AAR (2005b) Plant circadian clocks increase photosynthesis, growth, survival and competitive advantage. Science 309:630–633PubMedCrossRefGoogle Scholar
  21. Dodd AN, Gardner MJ, Hotta CT, Hubbard KE, Dalchau N, Love J, Assie JM, Robertson FC, Jakobsen MK, Goncalves J, Sanders D, Webb AAR (2007) The Arabidopsis circadian clock incorporates a cADPR-based feedback loop. Science 318:1789–1792PubMedCrossRefGoogle Scholar
  22. Domagalska MA, Sarnowska E, Nagy F, Davis SJ (2010) Genetic analyses of interactions among gibberellin, abscisic acid, and brassinosteroids in the control of flowering time in Arabidopsis thaliana. PLoS One 5:e14012PubMedCrossRefGoogle Scholar
  23. Dong MA, Farré EM, Thomashow F (2011) CIRCADIAN CLOCK-ASSOCIATED 1 and LATE ELONGATED HYPOCOTYL regulate expression of the C-REPEAT BINDING FACTOR (CBF) pathway in Arabidopsis. Proc Natl Acad Sci U S A 108:7241–7246PubMedCrossRefGoogle Scholar
  24. Edwards KD, Akman OE, Knox K, Lumsden PJ, Thomson AW, Brown PE, Pokhilko A, Kozam-bognar L, Nagy F, Rand DA, Millar AJ (2010) Quantitative analysis of regulatory flexibility under changing environmental conditions. Mol Systems Biol 6:424Google Scholar
  25. Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F, Chen L, Yu L, Iglesias-Pedraz JM, Kircher S, Schäfer E, Fu X, Fan LM, Deng XW (2008) Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451(7177):475–479PubMedCrossRefGoogle Scholar
  26. Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12(4):599PubMedGoogle Scholar
  27. Finkelstein RR, Rock CD (2002) Abscisic acid biosynthesis and response. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, RockvilleGoogle Scholar
  28. Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415PubMedCrossRefGoogle Scholar
  29. Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park SY, Cutler SR, Sheen J, Rodriguez PL, Zhu JK (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462:660–664PubMedCrossRefGoogle Scholar
  30. Fujimori T, Yamshino T, Kato T, Mizuno T (2004) Circadian-controlled basic helix-loop-helix factor, PIL6, implicated in light-signal transduction in Arabidopsis thaliana. Plant Cell Physiol 45:1078–1086PubMedCrossRefGoogle Scholar
  31. Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res. doi: 10.1007/s10265-011-0412-3
  32. Fukushima A, Kusano M, Nakamichi N, Kobayashi M, Hayashi N, Sakakibara H, Mizuno T, Saito K (2009) Impact of clock-associated Arabidopsis pseudo-response regulators in metabolic coordination. Proc Natl Acad Sci U S A 106(17):7251–7256PubMedCrossRefGoogle Scholar
  33. Garcia-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L, Blatt MR (2003) Nitric oxide regulates K+ and Cl channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc Natl Acad Sci U S A 100(19):11116–11121PubMedCrossRefGoogle Scholar
  34. Geiger D, Maierhofer T, Al-Rasheid KA, Scherzer S, Mumm P, Liese A, Ache P, Wellmann C, Marten I, Grill E, Romeis T, Hedrich R (2011) Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Sci Signal 4(173):ra32PubMedCrossRefGoogle Scholar
  35. Hanano S, Domagalska MA, Nagy F, Davis SJ (2006) Multiple phytohormones influence distinct parameters of the plant circadian clock. Genes Cells 11(12):1381–1392. doi: 10.1111/j.1365-2443.2006.01026.x PubMedCrossRefGoogle Scholar
  36. Harmer SL (2009) The circadian system in higher plants. Annu Rev Plant Biol 60:357–377. doi: 10.1146/annurev.arplant.043008.092054 PubMedCrossRefGoogle Scholar
  37. Harmer S (2010) Plant biology in the fourth dimension. Plant Physiol 154:467–470PubMedCrossRefGoogle Scholar
  38. Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110–2113PubMedCrossRefGoogle Scholar
  39. Hartung W, Sauter A, Hose E (2002) Abscisic acid in the xylem: where does it come from, where does it go to? J Exp Bot 53(366):27PubMedCrossRefGoogle Scholar
  40. Hauser F, Waadt R, Schroeder JI (2011) Evolution of abscisic acid synthesis and signaling mechanisms. Curr Biol 21(9):R346–R355PubMedCrossRefGoogle Scholar
  41. Higaki T, Kutsuna N, Sano T, Kondo N, Hasezawa S (2010) Quantification and cluster analysis of actin cytoskeletal structures in plant cells: role of actin bundling in stomatal movement during diurnal cycles in Arabidopsis guard cells. Plant J 61(1):156–165PubMedCrossRefGoogle Scholar
  42. Hirayama T, Shinozaki K (2007) Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci 12:343–351 Google Scholar
  43. Hotta CT, Gardner MJ, Hubbard KW, Baek SJ, Dalchau N, Suhit D, Dodd AN, Webb AAR (2007) Modulation of environmental responses of plants by circadian clocks. Plant Cell Environ 30:333–349PubMedCrossRefGoogle Scholar
  44. Huang D, Wu W, Abrams SR, Cutler AJ (2008) The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot 59:2991–3007PubMedCrossRefGoogle Scholar
  45. Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI (2010) Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev 24:1695–1708PubMedCrossRefGoogle Scholar
  46. Hundertmark M, Hincha DK (2008) LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118PubMedCrossRefGoogle Scholar
  47. Israelsson M, Siegel RS, Young J, Hashimoto M, Iba K, Schroeder JI (2006) Guard cell ABA and CO2 signaling network updates and Ca2+ sensor priming hypothesis. Curr Opin Plant Biol 9:654–663Google Scholar
  48. Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27(4):325–333PubMedCrossRefGoogle Scholar
  49. James AB, Monreal JA, Nimmo GA, Kelly CL, Herzyk P, Jenkins GI, Nimmo HG (2008) The circadian clock in Arabidopsis roots is a simplified slave version of the clock in shoots. Science 322:1832–1835PubMedCrossRefGoogle Scholar
  50. Jannat R, Uraji M, Morofuji M, Islam MM, Bloom RE, Nakamura Y, McClung CR, Schroeder JI, Mori IC, Murata Y (2011) Roles of intracellular hydrogen peroxide accumulation in abscisic acid signaling in Arabidopsis guard cells. J Plant Physiol. doi:  10.1016/jplph.2011.05.006
  51. Ji X, Dong B, Shiran B, Talbot MJ, Edlington JE, Hughes T, White RG, Gubler F, Dolferus R (2011) Control of abscisic acid catabolism and abscisic acid homeostasis is important for reproductive stage stress tolerance in cereals. Plant Physiol 156(2):647PubMedCrossRefGoogle Scholar
  52. Jiang F, Hartung W (2008) Long-distance signalling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal. J Exp Bot 59(1):37PubMedCrossRefGoogle Scholar
  53. Jiang T, Zhang XF, Wang XF, Zhang DP (2011) Arabidopsis 3-ketoacyl-CoA thiolase -2 (KAT2), an enzyme of fatty acid β-oxidation, is involved in ABA signal transduction. Plant Cell Physiol 52:528–538PubMedCrossRefGoogle Scholar
  54. Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, Martinoia E, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci U S A 107(5):2355–2360PubMedCrossRefGoogle Scholar
  55. Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45(3):346–350PubMedCrossRefGoogle Scholar
  56. Khan S, Rowe SC, Harmon FG (2010) Coordination of the maize transcriptome by a conserved circadian clock. BMC Plant Biol 10:126PubMedCrossRefGoogle Scholar
  57. Khandelwal A, Sho SH, Marella H, Sakata Y, Perroud P-F, Pan A, Quatrano RS (2010) Role of ABA and ABI3 in desiccation tolerance. Science 327:546PubMedCrossRefGoogle Scholar
  58. Kidokoro S, Maruyamaa K, Nakashima K, Imur Y, NaarusakaY SZK, Osakabe Y, Fujita Y, Mizoi J, Shinozaki K, Yamaguchi-Chinozaki K (2009) The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis. Plant Physiol 151:2046–2057PubMedCrossRefGoogle Scholar
  59. Kim W-Y, Fujiwara S, Suh S-S, Kim J, Kim Y, Han L, David K, Putterill J, Ham HG, Somers DE (2007) ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449:356–360PubMedCrossRefGoogle Scholar
  60. Kim TH, Böhmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591PubMedCrossRefGoogle Scholar
  61. Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1994) Characterization of two cDNAs (ERD10 and ERD14) corresponding to genes that respond rapidly to dehydration stress in Arabidopsis thaliana. Plant Cell Physiol 35(2):225–231PubMedGoogle Scholar
  62. Knight H, Zarka DG, Okamoto H, Thomashow MF, Knight MR (2004) Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element. Plant Physiol 135(3):1710PubMedCrossRefGoogle Scholar
  63. Koini M, Allen A, Tilley C, Harberd H, Whitelam G, Franklin K (2009) High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr Biol 19:408–413PubMedCrossRefGoogle Scholar
  64. Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5(1):33–36PubMedCrossRefGoogle Scholar
  65. Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Sugimoto E, Kamiya A, Moriyama Y, Shinozaki K (2010) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci U S A 107(5):2361–2366PubMedCrossRefGoogle Scholar
  66. Kurup S, Jones H, Holdsworth M (2000) Interactions of the developmental regulator ABI3 with proteins indentified from developing Arabidopsis seeds. Plant J 21:143–155PubMedCrossRefGoogle Scholar
  67. Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E (2004) The Arabidopsis cytochrome p450 CYP707A encodes ABA 8′-hydrocylases: key enzymes in ABA catabolism. EMBO J 23:1647–1656PubMedCrossRefGoogle Scholar
  68. Lee KH, Piao HL, Kim HY, Choi SM, Jiang F, Hartung W, Hwang W, Hwang I, Kwak JM, Lee IJ, Hwang I (2006) Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 126:1109–1120PubMedCrossRefGoogle Scholar
  69. Lee S, Kang J, Park HJ, Kim MD, Bae MS, Choi H, Kim SY (2010) DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its overexpression affects abscisic acid sensitivity. Plant Physiol 153(2):716PubMedCrossRefGoogle Scholar
  70. Legnaioli T, Cuevas J, Mas P (2009) TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought. EMBO J 28(23):3745–3757PubMedCrossRefGoogle Scholar
  71. Leivar P, Monte E, Oda Y, Liu T, Carle C, Castillon A, Huq E, Quail PH (2008) Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness. Curr Biol 18:1815–1823PubMedCrossRefGoogle Scholar
  72. Li G, Siddiqui H, Teng Y, Lin R, Wan X, Li J, Lau OS, Ouyang X, Dai M, Wan J, Devlin PF, Deng XW, Wang H (2011) Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nat Cell Biol 13:616–622PubMedCrossRefGoogle Scholar
  73. Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068PubMedGoogle Scholar
  74. MacRobbie EAC, Kurup S (2007) Signalling mechanisms in the regulation of vacuolar ion release in guard cells. New Phytol 175:630–640 Google Scholar
  75. Marten H, Konrad KR, Dietrich P, Roelfsema MR, Hedrich R (2007) Ca2+-dependent and -independent abscisic acid activation of plasma membrane anion channels in guard cells of Nicotiana tabacum. Plant Physiol 143(1):28–37PubMedCrossRefGoogle Scholar
  76. Mas P (2005) Circadian clock signaling in Arabidopsis thaliana: from gene expression to physiology and development. Int J Dev Biol 49(5–6):491–500. doi: 10.1387/ijdb.041968pm PubMedCrossRefGoogle Scholar
  77. Mas P (2008) Circadian clock function in Arabidopsis thaliana: time beyond transcription. Trends Cell Biol 18:273–281PubMedCrossRefGoogle Scholar
  78. McClung CR (2006) Plant circadian rhythms. Plant Cell 18(4):792–803. doi: 10.1105/tpc.106.040980 PubMedCrossRefGoogle Scholar
  79. McClung CR (2008) Comes a time. Curr Opin Plant Biol 11(5):514–520. doi: 10.1016/j.pbi.2008.06.010 PubMedCrossRefGoogle Scholar
  80. McClung CR (2009) Linking the loops. Science 323:1440–144PubMedCrossRefGoogle Scholar
  81. McClung CR, Gutierrez RA (2010) Network news: prime time for systems biology of the plant circadian clock. Curr Opin Genet Dev 20(6):588–598. doi: 10.1016/j.gde.2010.08.010 PubMedCrossRefGoogle Scholar
  82. McCourt P, Creelman R (2008) The ABA receptors—we report you decide. Curr Opin Plant Biol 11:474–478PubMedCrossRefGoogle Scholar
  83. McWatters HG, Devlin PF (2011) Timing in plants—a rhythmic arrangement. FEBS Lett 585:1474–1484PubMedCrossRefGoogle Scholar
  84. Melcher K, Ng L-M, Zho XE, Soon F-F, Xu Y, Suino-Powell KM, Park S-Y, Weiner JJ, Fujii H, Chinnusamy V, Kovach A, Li J, Wang Y, Li J, Peterson FC, Jensen DR, Yong E-L, Volkman BF, Cutler SR, Zhu J-K, Xu HE (2009) A gate–latch–lock mechanism for hormone signalling by abscisic acid receptors. Nature 462:602–608PubMedCrossRefGoogle Scholar
  85. Meyer S, Scholz-Starke J, De Angeli A, Kovermann P, Burla B, Gambale F, Martinoia E (2011) Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation. Plant J (in press)Google Scholar
  86. Michael TP, Breton G, Hanzen SP, Priest H, Mocler TD, Kay SA, Chory J (2008a) A morning-specific phytohormone gene expression program underlying rhythmic plant growth. PLoS Biol 6:1887–1898CrossRefGoogle Scholar
  87. Michael TP, Mockler TC, Breton G, McEntee C, Byer A, Trout JD, Hazen SP, Shen R, Priest HD, Sullivan CM, Givan SA, Yanovsky M, Hong F, Kay SA, Chory J (2008b) Network discovery pipeline elucidates conserved time of day specific cis-regulatory modules. PLoS Genet 4(2):e14PubMedCrossRefGoogle Scholar
  88. Mikkelsen MD, Thomashow MF (2009) A role for circadian evening elements in cold-regulated gene expression in Arabidopsis. Plant J 60:328–339PubMedCrossRefGoogle Scholar
  89. Millar AA, Jacobsen JV, Ross JJ, Helliwell CA, Poole AT, Scofield G, Redi JB, Gubler F (2006) Seed dormancy and ABA metabolism in Arabidopsis and barley: the role of ABA 8′-hydroxylase. Plant J 45:942–954PubMedCrossRefGoogle Scholar
  90. Mishra G, Zhang W, Deng F, Zhao J, Wang X (2006) A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science 312:264–266PubMedCrossRefGoogle Scholar
  91. Miyazono K, Miyakawa T, Sawano Y, Kubota K, Kang H-J, Asano A, Miyauchi Y, Takahashi M, Zhi Y, Fujita Y, Yoshida T, Kodaira K-S, Yamaguchi-Shinozaki K, Tanokura M (2009) Structural basis of abscisic acid signalling. Nature 462:609–614PubMedCrossRefGoogle Scholar
  92. Mizoguchi M, Umezawa T, Nakashima K, Kidokoro S, Takasaki H, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2010) Two closely related subclass II SnRK2 protein kinases cooperatively regulate drought-inducible gene expression. Plant Cell Physiol 51(5):842–847PubMedCrossRefGoogle Scholar
  93. Mizuno T, Yamashino T (2008) Comparative transcriptome of diurnally oscillating genes and hormone-responsive genes in Arabidopsis thaliana: Insight into circadian clock-controlled daily responses to common ambient stresses in plants. Plant Cell Physiol 49(3):481–487. doi: 10.1093/pcp/pcn008 PubMedCrossRefGoogle Scholar
  94. Mockler TC, Michael TP, Priest HD, Shen R, Sullivan CM, Givan SA, McEntee C, Kay SA, Chory J (2007) THE DIURNAL PROJECT: diurnal and circadian expression profiling, model-based pattern matching and promoter analysis. Cold Spring Harb Symp Quant Biol 72:353–363PubMedCrossRefGoogle Scholar
  95. Nakamichi N, Kusano M, Fukushima A, Kite IS, Takafumi Y, Saito K, Sakakibara H, Mizuno T (2009) Transcript profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR arrhythmic triple mutant reveals a role for the circadian clock in cold stress response. Plant Cell Physiol 50:447–462PubMedCrossRefGoogle Scholar
  96. Nakamichi N, Kiba T, Henriques R, Mizuno T, Chua N-H, Sakakibara H (2010) PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in Arabidopsis. Plant Cell 22:594–605PubMedCrossRefGoogle Scholar
  97. Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149(1):88PubMedCrossRefGoogle Scholar
  98. Neil S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59:165–176Google Scholar
  99. Nishimura N, Sarkeshik A, Nito K, Park SY, Wang A, Carvalho PC, Lee S, Caddell DF, Cutler SR, Chory J, Yates JR, Schroeder JI (2010) PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant J 61:290–299PubMedCrossRefGoogle Scholar
  100. Nováková M, Motyka V, Dobrev PI, Malbeck J, Gaudinová A, Vanková R (2005) Diurnal variation of cytokinin, auxin and abscisic acid levels in tobacco leaves. J Exp Bot 56:2877–2883PubMedCrossRefGoogle Scholar
  101. Nozue K, Covington MF, Duek PD, Lorrain S, Fankhauser C, Harmer SL, Maloof JN (2007) Rhythmic growth explained by coincidence between internal and external cues. Nature 448:358–361PubMedCrossRefGoogle Scholar
  102. Pan Y, Michael TP, Hudson ME, Kay SA, Chory J, Schuler MA (2009) Cytochrome P450 monooxygenases as reporters for circadian-regulated pathways. Plant Physiol 150(2):858–878PubMedCrossRefGoogle Scholar
  103. Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071PubMedGoogle Scholar
  104. Penfield S (2008) Temperature perception and signal transduction in plants. New Phytol 179:615–628PubMedCrossRefGoogle Scholar
  105. Penfield S, Hall A (2009) A role for multiple circadian clock genes in the response to signals that break seed dormancy in Arabidopsis. Plant Cell 21(6):1722–1732. doi: 10.1105/tpc.108.064022 PubMedCrossRefGoogle Scholar
  106. Penfield S, King J (2009) Towards a systems biology approach to understanding seed dormancy and germination. Proc Biol Sci 276:3561–3569PubMedCrossRefGoogle Scholar
  107. Penfield S, Gilday AD, Haliday KJ, Graham IA (2006a) DELLA-mediated cotyledon expansion breaks coat-imposed seed dormancy. Curr Biol 16:2366–2370Google Scholar
  108. Penfield S, Li Y, Gilday AD, Graham S, Graham IA (2006b) Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm. Plant Cell 18:1887–1899Google Scholar
  109. Perales M, Mas P (2007) A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock. Plant Cell 19:2111–2123PubMedCrossRefGoogle Scholar
  110. Piskurewicz U, Turecková V, Lacombe E, Lopez-Molina L (2009) Far-red light inhibits germination through DELLA-dependent stimulation of ABA synthesis and ABI3 activity. EMBO J 28(15):2259–2271PubMedCrossRefGoogle Scholar
  111. Pokhilko A, Hodge SK, Stratford K, Knox K, Edwards KD, Thomson AW, Mizuno T, Millar AJ (2010) Data assimilation constrains new connections and components in a complex, eukaryotic circadian clock model. Mol System Biol 6:416Google Scholar
  112. Proels RK, Roitsch T (2009) Extracellular invertase LIN6 of tomato: a pivotal enzyme for integration of metabolic, hormonal, and stress signals is regulated by a diurnal rhythm. J Exp Bot 60:1555–1567PubMedCrossRefGoogle Scholar
  113. Pruneda-Paz JL, Kay SA (2010) An expanding universe of circadian networks in higher plants. Trends Plant Sci 15(5):259–265. doi: 10.1016/j.tplants.2010.03.003 PubMedCrossRefGoogle Scholar
  114. Pruneda-Paz JL, Breton G, Para A, Kay SA (2009) A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science 323:1481–1485PubMedCrossRefGoogle Scholar
  115. Qin X, Zeevaart JAD (1999) The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid synthesis in water-stressed bean. Proc Natl Acad Sci U S A 96(26):15354–15361PubMedCrossRefGoogle Scholar
  116. Qin X, Zeevaart JAD (2002) Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiol 128(2):544PubMedCrossRefGoogle Scholar
  117. Raghavendra A, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15:395–401PubMedCrossRefGoogle Scholar
  118. Robertson FC, Skeffington AW, Gardner MJ, Webb AAR (2009) Interactions between circadian and hormonal signalling in plants. Plant Mol Biol 69:419–427PubMedCrossRefGoogle Scholar
  119. Saito N, Nakamura Y, Mori IC, Murata Y (2009) Nitric oxide functions in both methyl jasmonate signaling and abscisic acid signaling in Arabidopsis guard cells. Plant Signal Behav 4(2):119–120PubMedCrossRefGoogle Scholar
  120. Salome PA, McClung CR (2005) What makes the Arabidopsis clock tick on time? A review on entrainment. Plant Cell Environ 28:21–38CrossRefGoogle Scholar
  121. Santiago J, Dupeux F, Round A, Antoni R, Park S-Y, Jamin M, Cutler SR, Rodriguez PL, Márquez JA (2009) The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462:665–668PubMedCrossRefGoogle Scholar
  122. Satbhai SB, Yamashino T, Okada R, Nomoto Y, Mizuno T, Tezuka Y, Itoh T, Tomita M, Otsuki S, Aoki S (2011) Pseudo-response regulator (PRR) homologs of the moss Physcomitrella patens: insights into the evolution of the PRR family in land plants. DNA Res 18:39–52PubMedCrossRefGoogle Scholar
  123. Seo M, Koshiba T (2002) Complex regulation of ABA biosynthesis in plants. Trends Plant Sci 7(1):41–48PubMedCrossRefGoogle Scholar
  124. Seo M, Hanada A, Kuwahara A, Endo A, Okamoto M, Yamauchi Y, North H, Marion-Poll A, Sun TP, Koshiba T, Kamiya Y, Yamaguchi S, Nambara E (2006) Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellins metabolism. Plant J 48:354–366Google Scholar
  125. Shang Y, Yan L, Liu ZQ, Cao Z, Mei C, Xin Q, Wu FQ, Wang XF, Du SY, Jiang T, Zhang XF, Zhao R, Sun HL, Liu R, Yu YT, Zhang DP (2010) The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell 22:1909–1935PubMedCrossRefGoogle Scholar
  126. Shen Y, Wang X, Wu F, Du S, Cao Z, Shang Y, Wang X, Peng C, Yu Z, Zhu S, Fan R, Xu Y, Zhang D (2006) The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443:823–826PubMedCrossRefGoogle Scholar
  127. Staiger D, Koster T (2011) Spotlight on post-transcriptional control in the circadian system. Cell Mol Life Sci 68:71–83PubMedCrossRefGoogle Scholar
  128. Takata N, Saito S, Saito CT, Nanjo T, Shinohara K, Uemura M (2009) Molecular phylogeny and expression of poplar circadian clock genes, LHY1 and LHY2. New Phytol 181:808–819PubMedCrossRefGoogle Scholar
  129. Takata N, Saito S, Saito CT, Uemura M (2010) Phylogenetic foot print of the plant clock system in angiosperms: evolutionary processes of Pseudo-Response Regulators. BMC Evol Biol 10:126PubMedCrossRefGoogle Scholar
  130. Tallman G (2004) Are diurnal patterns of stomatal movement the result of alternating metabolism of endogenous guard cell ABA and accumulation of ABA delivered to the apoplast around guard cells by transpiration? J Exp Bot 55(405):1963–1976PubMedCrossRefGoogle Scholar
  131. Thines B, Harmon FG (2010) Ambient temperature response establishes ELF3 as a required component of the core Arabidopsis circadian clock. Proc Natl Acad Sci U S A 107:3257–3262PubMedCrossRefGoogle Scholar
  132. Thines B, Harmon FG (2011) Four easy pieces: mechanisms underlying circadian regulation of growth and development. Curr Opin Plant Biol 14:31–37PubMedCrossRefGoogle Scholar
  133. Thompson AJ, Jackson AC, Parker RA, Morpeth DR, Burbidge A, Taylor IB (2000) Abscisic acid biosynthesis in tomato: regulation of zeaxanthin epoxidase and 9-cis-epoxycarotenoid dioxygenase mRNAs by light/dark cycles, water stress and abscisic acid. Plant Mol Biol 42(6):833–845PubMedCrossRefGoogle Scholar
  134. Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14:310–317PubMedCrossRefGoogle Scholar
  135. Troein C, Corellou F, Dixon LE, van Ooijen G, O'Neill JS, F-Y MAJ (2011) Multiple light inputs to a simple clock circuit allow complex biological rhythms. Plant J 66:375–385PubMedCrossRefGoogle Scholar
  136. Tsuzuki T, Takahashi K, Inoue S, Okigaki Y, Tomiyama M, Hossain MA, Shimazaki K, Murata Y, Kinoshita T (2011) Mg-chelatase H subunit affects ABA signaling in stomatal guard cells, but is not an ABA receptor in Arabidopsis thaliana. J Plant Res 1–12. doi: 10.1007/s10265-011-0426-x
  137. Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol 59:573–594PubMedCrossRefGoogle Scholar
  138. Tyler L, Thomas SG, Hu J, Dill A, Alonso JM, Ecker JR, Sun TP (2004) Della proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol 135(2):1008–1019PubMedCrossRefGoogle Scholar
  139. Umezawa T (2011) Systems biology approaches to abscisic acid signalling. J Plant Res. doi: 10.1007/s10265-011-0418-x
  140. Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Molecular basis of the core regulatory network in aba responses: sensing, signaling and transport. Plant Cell Physiol 51(11):1821–1839. doi: 10.1093/pcp/pcq156 PubMedCrossRefGoogle Scholar
  141. Underwood W, Melotto M, He SY (2007) Role of plant stomata in bacterial invasion. Cell Microbiol 9:1621–1629Google Scholar
  142. Wang L, Fujiwara S, Somers DE (2010) PRR5 regulates phosphorylation, nuclear import and subnuclear localization of TOC1 in the Arabidopsis circadian clock. EMBO J 29:1903–1915PubMedCrossRefGoogle Scholar
  143. Wang Y, Wu JF, Nakamichi N, Sakakibara H, Nam HG, Wu SH (2011) LIGHT-REGULATED WD1 and PSEUDO-RESPONSE REGULATOR9 form a positive feedback regulatory loop in the Arabidopsis circadian clock. Plant Cell 23:486–498PubMedCrossRefGoogle Scholar
  144. Webb AAR (2003) The physiology of circadian rhythms in plants. New Phytol 160:281–303CrossRefGoogle Scholar
  145. Weiner JJ, Peterson FC, Volkman BJ, Cutler SR (2010) Structural and functional insights into core ABA signalling. Curr Opin Plant Biol 13:495–502PubMedCrossRefGoogle Scholar
  146. Wenden B, Kozma-Bognar L, Edwards KD, Hall AJW, Locke JCW, Millar AJ (2011) Light inputs shape the Arabidopsis circadian system. Plant J 66:480–491PubMedCrossRefGoogle Scholar
  147. Wilkins O, Brautigam K, Campbell MM (2010) Time of day shapes Arabidopsis drought transcriptomes. Plant J 63:715–727PubMedCrossRefGoogle Scholar
  148. Wu JF, Wang Y, Wu SH (2008) Two new clock proteins, LWD1 and LWD2, regulate Arabidopsis photoperiodic flowering. Plant Physiol 148:948–959PubMedCrossRefGoogle Scholar
  149. Xu Z, Hotta CT, Dodd AN, Love J, Sharrock R, Lee YW, Xie Q, Johnson CH, Webb AAR (2007) Distinct light and clock modulation of cytosolic free Ca2+ oscillations and rhythmic CHLOROPHYLL A/B BINDING PROTEIN2 promoter activity in Arabidopsis. Plant Cell 19:3474–3490PubMedCrossRefGoogle Scholar
  150. Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264PubMedGoogle Scholar
  151. Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10(2):88–94PubMedCrossRefGoogle Scholar
  152. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803PubMedCrossRefGoogle Scholar
  153. Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61(4):672–685PubMedCrossRefGoogle Scholar
  154. Zhang J, Davies WJ (1989) Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil. Plant Cell Environ 12:73–81CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • David Seung
    • 1
    • 3
  • Juan Pablo Matte Risopatron
    • 2
  • Brian Joseph Jones
    • 2
    Email author
  • Jan Marc
    • 1
  1. 1.School of Biological SciencesThe University of SydneySydneyAustralia
  2. 2.Faculty of Agriculture, Food and Natural ResourcesThe University of SydneySydneyAustralia
  3. 3.Institute of Agricultural SciencesETH/Swiss Federal Institute of TechnologyZurichSwitzerland

Personalised recommendations