Advertisement

Protoplasma

, Volume 249, Issue 3, pp 835–842 | Cite as

Biological reactivity of TiO2 nanoparticles assessed by ex vivo testing

  • Janez Valant
  • Damjana Drobne
Short Communication

Abstract

Isolated digestive gland epithelium from a model invertebrate organism was used in an ex vivo system to assess the potential of nanoparticulate TiO2 to disrupt cell membranes. Primary particle size, surface area, concentration of particles in a suspension, and duration of exposure to TiO2 particles were all found to have effects, which are observed at concentrations of nano-TiO2 as low as 1 μg mL−1. The test system employed here can be used as a fast screening tool to assess biological potential of nanoparticles with similar chemical composition but different size, concentration, or duration of exposure. We discuss the potential of ex vivo tests to avoid some of the limitations of conventional in vitro tests.

Keywords

TiO2 particles Ex vivo testing Nanotoxicity Biological potential of nanoparticles 

Notes

Acknowledgments

We would like to thank the Slovenian Research Agency (project number J1-9475), Ksenija Kogej and Darko Makovec for nanoparticles characterization, Živa Pipan-Tkalec and Maja Remškar for TEM analyses, and G.W.A. Milne for editorial assistance.

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. Amezaga-Madrid P, Silveyra-Morales R, Cordoba-Fierro L, Nevarez-Moorillon GV, Miki-Yoshida M, Orrantia-Borunda E, Solis FJ (2003) TEM evidence of ultrastructural alteration on Pseudomonas aeruginosa by photocatalytic TiO2 thin films. J Photoch Photobio 70(1):45–50CrossRefGoogle Scholar
  2. Banaszak MMH (2009) Nanotoxicology: a personal perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(4):353–359CrossRefGoogle Scholar
  3. Braydich-Stolle LK, Schaeublin NM, Murdock RC, Jiang J, Biswas P, Schlager JJ, Hussain SM (2009) Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J Nanopart Res 11(6):1361–1374CrossRefGoogle Scholar
  4. Ferreira NGC, Santos MJG, Domingues I, Calhoa CF, Monteiro M, Amorim MJB, Soares AMVM, Loureiro S (2010) Basal levels of enzymatic biomarkers and energy reserves in Porcellionides pruinosus. Soil Biol Biochem 42(12):2128–2136. doi: 10.1016/j.soilbio.2010.08.008 CrossRefGoogle Scholar
  5. Frank SA, Nowak MA (2004) Problems of somatic mutation and cancer. Bioessays 26(3):291–299PubMedCrossRefGoogle Scholar
  6. Fujita K, Horie M, Kato H, Endoh S, Suzuki M, Nakamura A, Miyauchi A, Yamamoto K, Kinugasa S, Nishio K, Yoshida Y, Iwahashi H, Nakanishi J (2009) Effects of ultrafine TiO2 particles on gene expression profile in human keratinocytes without illumination: involvement of extracellular matrix and cell adhesion. Toxicol Lett 191(2–3):109–117PubMedCrossRefGoogle Scholar
  7. Graton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JE (2008) The effect of particle design on cellular internalization pathways. P Natl Acad Sci USA 105(33):11613–11618CrossRefGoogle Scholar
  8. Hartung T, Daston G (2009) Are in vitro tests suitable for regulatory use? Toxicol Sci 111(2):233–237PubMedCrossRefGoogle Scholar
  9. Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71(7):1308–1316PubMedCrossRefGoogle Scholar
  10. Hussain S, Boland S, Baeza-Squiban A, Hamel R, Thomassen LCJ, Martens JA, Billon-Galland MA, Fleury-Feith J, Moisan F, Pairon JC, Marano F (2009) Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology 260(1–3):142–149PubMedCrossRefGoogle Scholar
  11. Karlsson HL, Gustafsson J, Cronholm P, Moller L (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano- and micrometer size. Toxicol Lett 188(2):112–118PubMedCrossRefGoogle Scholar
  12. Lee YS, Yoon S, Yoon HJ, Lee K, Yoon HK, Lee JH, Song CW (2009) Inhibitor of differentiation 1 (Id1) expression attenuates the degree of TiO2-induced cytotoxicity in H1299 non-small cell lung cancer cells. Toxicol Lett 189(3):191–199PubMedCrossRefGoogle Scholar
  13. Pan Z, Lee W, Slutsky L, Clark RAF, Pernodet N, Rafailovich MH (2009) Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small 5(4):511–520PubMedCrossRefGoogle Scholar
  14. Park MVDZ, Lankveld DPK, van Loveren H, de Jong WH (2009) The status of in vitro toxicity studies in the risk assessment of nanomaterials. Nanomedicine 4(6):669–685PubMedCrossRefGoogle Scholar
  15. Ponten J (2001) Cell biology of precancer (Reprinted from Cancer Surveys 32, Precancer Biology, Importance and Possible Prevention, 1988). Eur J Cancer 37:S97–S113PubMedCrossRefGoogle Scholar
  16. Poynton HC, Lazorchak JM, Impellitteri CA, Smith ME, Rogers K, Patra M, Hammer KA, Allen HJ, Vulpe CD (2011) Differential gene expression in Daphnia magna suggests distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions. Environ Sci Technol 45(2):762–768. doi: 10.1021/Es102501z PubMedCrossRefGoogle Scholar
  17. Regoli F, Nigro M, Orlando E (1998) Lysosomal and antioxidant responses to metals in the Antarctic scallop Adamussium colbecki. Aquat Toxicol 40(4):375–392CrossRefGoogle Scholar
  18. Sayes CM, Warheit DB (2008) An in vitro investigation of the differential cytotoxic responses of human and rat lung epithelial cell lines using TiO2 nanoparticles. Int J Nanotechnol 5(1):15–29CrossRefGoogle Scholar
  19. Sayes CM, Wahi R, Kurian PA, Liu YP, West JL, Ausman KD, Warheit DB, Colvin VL (2006) Correlating nanoscale titania structure with toxicity: A cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92(1):174–185PubMedCrossRefGoogle Scholar
  20. Simon-Deckers A, Gouget B, Mayne-L'Hermite M, Herlin-Boime N, Reynaud C, Carriere M (2008) In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology 253(1–3):137–146PubMedCrossRefGoogle Scholar
  21. Singh N, Manshian B, Jenkins GJS, Griffiths SM, Williams PM, Maffeis TGG, Wright CJ, Doak SH (2009) NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30(23–24):3891–3914PubMedCrossRefGoogle Scholar
  22. Soto K, Garza KM, Murr LE (2007) Cytotoxic effects of aggregated nanomaterials. Acta Biomater 3(3):351–358PubMedCrossRefGoogle Scholar
  23. Thevenot P, Cho J, Wavhal D, Timmons RB, Tang LP (2008) Surface chemistry influences cancer killing effect of TiO2 nanoparticles. Nanomed-Nanotechnol 4(3):226–236CrossRefGoogle Scholar
  24. Valant J, Drobne D, Sepcic K, Jemec A, Kogej K, Kostanjsek R (2009) Hazardous potential of manufactured nanoparticles identified by in vivo assay. J Haz Mat 171(1–3):160–165CrossRefGoogle Scholar
  25. Vamanu CI, Cimpan MR, Hol PJ, Sornes S, Lie SA, Gjerdet NR (2008) Induction of cell death by TiO2 nanoparticles: Studies on a human monoblastoid cell line. Toxicol in Vitro 22(7):1689–1696PubMedCrossRefGoogle Scholar
  26. Wang JX, Fan YB, Gao Y, Hu QH, Wang TC (2009) TiO2 nanoparticles translocation and potential toxicological effect in rats after intraarticular injection. Biomaterials 30(27):4590–4600PubMedCrossRefGoogle Scholar
  27. Warheit DB (2008) How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol Sci 101(2):183–185PubMedCrossRefGoogle Scholar
  28. Zimmer M (2002) Nutrition in terrestrial isopods (Isopoda: Oniscidea): an evolutionary-ecological approach. Biol Rev 77(4):455–493PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Centre of Excellence in Advanced Materials and Technologies for the Future (CO NAMASTE), Jožef Stefan InstituteLjubljanaSlovenia
  3. 3.Centre of Excellence in Nanoscience and Nanotechnology (CO Nanocenter), Jožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations