, Volume 249, Issue 2, pp 285–299 | Cite as

Variations on a theme: plant autophagy in comparison to yeast and mammals

  • Tamar Avin-Wittenberg
  • Arik Honig
  • Gad GaliliEmail author
Review Article


Autophagy is an evolutionary conserved process of bulk degradation and nutrient sequestration that occurs in all eukaryotic cells. Yet, in recent years, autophagy has also been shown to play a role in the specific degradation of individual proteins or protein aggregates as well as of damaged organelles. The process was initially discovered in yeast and has also been very well studied in mammals and, to a lesser extent, in plants. In this review, we summarize what is known regarding the various functions of autopahgy in plants but also attempt to address some specific issues concerning plant autophagy, such as the insufficient knowledge regarding autophagy in various plant species other than Arabidopsis, the fact that some genes belonging to the core autophagy machinery in various organisms are still missing in plants, the existence of autophagy multigene families in plants and the possible operation of selective autophagy in plants, a study that is still in its infancy. In addition, we point to plant-specific autophagy processes, such as the participation of autophagy during development and germination of the seed, a unique plant organ. Throughout this review, we demonstrate that the use of innovative bioinformatic resources, together with recent biological discoveries (such as the ATG8-interacting motif), should pave the way to a more comprehensive understanding of the multiple functions of plant autophagy.


Autophagy Plants ATG8 ATG18 ATG8-interacting motif 



ATG8-interacting motif




Basic local alignment search tool


Endoplasmic reticulum


GABA receptor-associated protein


Golgi-associated ATPase enhancer of 16 kDa


Green fluorescent protein


Light chain 3 microtubule-associated protein


LC3-interacting region


Neighbor of BRCA1


Sequestosome 1


Phagophore assembly site


Programmed cell death

PI3 kinase

Phosphoinositide 3 kinase


Phosphatidylinositol 3 phosphate


Protein storage vacuole


RNA interference


Reactive oxygen species


Target of rapamycin


Real-time polymerase chain reaction


Ribulose-1,5-bisphosphate carboxylase oxygenase


Tryptophan-rich sensory protein




WD repeat protein-interacting phosphoinositides



We thank the J & R Center for Scientific Research at the Weizmann Institute of Science and the Israeli Ministry of Agriculture for supporting our research on autophagy. GG is the incumbent of the Bronfman Chair of Plant Sciences.

Conflicts of Interest



  1. Angelovici R, Fait A, Zhu X, Szymanski J, Feldmesser E, Fernie AR, Galili G (2009) Deciphering transcriptional and metabolic networks associated with lysine metabolism during Arabidopsis seed development. Plant Physiol 151(4):2058–2072PubMedCrossRefGoogle Scholar
  2. Bassham DC (2002) Golgi-independent trafficking of macromolecules to the plant vacuole. Adv Bot Res 38:65–91CrossRefGoogle Scholar
  3. Bassham DC (2007) Plant autophagy-more than a starvation response. Curr Opin Plant Biol 10(6):587–593PubMedCrossRefGoogle Scholar
  4. Bassham DC (2009) Function and regulation of macroautophagy in plants. Biochim Biophys Acta 1793(9):1397–1403PubMedCrossRefGoogle Scholar
  5. Bassham DC, Laporte M, Marty F, Moriyasu Y, Ohsumi Y, Olsen LJ, Yoshimoto K (2006) Autophagy in development and stress responses of plants. Autophagy 2(1):2–11PubMedGoogle Scholar
  6. Behrends C, Sowa ME, Gygi SP, Harper JW (2010) Network organization of the human autophagy system. Nature 466(703):68–76PubMedCrossRefGoogle Scholar
  7. Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171(4):603–614PubMedCrossRefGoogle Scholar
  8. Burman C, Ktistakis NT (2010) Regulation of autophagy by phosphatidylinositol 3-phosphate. FEBS Lett 584(7):1302–1312PubMedCrossRefGoogle Scholar
  9. Cacas JL (2010) Devil inside: does plant programmed cell death involve the endomembrane system? Plant Cell Environ 33(9):1453–1473PubMedGoogle Scholar
  10. Cacas JL, Diamond M (2009) Is the autophagy machinery an executioner of programmed cell death in plants? Trends Plant Sci 14(6):299–300PubMedCrossRefGoogle Scholar
  11. Cebollero E, Reggiori F (2009) Regulation of autophagy in yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1793(9):1413–1421PubMedCrossRefGoogle Scholar
  12. Chen MH, Liu LF, Chen YR, Wu HK, Yu SM (1994) Expression of alpha-amylases, carbohydrate metabolism, and autophagy in cultured rice cells is coordinately regulated by sugar nutrient. Plant J 6(5):625–636PubMedCrossRefGoogle Scholar
  13. Chrispeels MJ, Herman EM (2000) Endoplasmic reticulum-derived compartments function in storage and as mediators of vacuolar remodeling via a new type of organelle, precursor protease vesicles. Plant Physiol 123(4):1227–1234PubMedCrossRefGoogle Scholar
  14. Chung T, Suttangkakul A, Vierstra RD (2009) The ATG autophagic conjugation system in maize: ATG transcripts and abundance of the ATG8-lipid adduct are regulated by development and nutrient availability. Plant Physiol 149(1):220–234PubMedCrossRefGoogle Scholar
  15. Chung T, Phillips AR, Vierstra RD (2010) ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A AND ATG12B loci. Plant J 62(3):483–493PubMedCrossRefGoogle Scholar
  16. Clague MJ, Urbé S (2010) Ubiquitin: same molecule, different degradation pathways. Cell 143(5):682–685PubMedCrossRefGoogle Scholar
  17. Crespo JL, Díaz-Troya S, Florencio FJ (2005) Inhibition of target of rapamycin signaling by rapamycin in the unicellular green alga Chlamydomonas reinhardtii. Plant Physiol 139(4):1736–1749PubMedCrossRefGoogle Scholar
  18. Doelling JH, Walker JM, Friedman EM, Thompson AR, Vierstra RD (2002) The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J Biol Chem 277(36):33105–33114PubMedCrossRefGoogle Scholar
  19. Díaz-Troya S, Florencio FJ, Crespo JL (2008a) Target of rapamycin and LST8 proteins associate with membranes from the endoplasmic reticulum in the unicellular green alga Chlamydomonas reinhardtii. Eukaryot Cell 7(2):212–222PubMedCrossRefGoogle Scholar
  20. Díaz-Troya S, Pérez-Pérez ME, Florencio FJ, Crespo JL (2008b) The role of TOR in autophagy regulation from yeast to plants and mammals. Autophagy 4(7):851–865PubMedGoogle Scholar
  21. Farré JC, Krick R, Subramani S, Thumm M (2009) Turnover of organelles by autophagy in yeast. Curr Opin Cell Biol 21(4):522–530PubMedCrossRefGoogle Scholar
  22. Fujiki Y, Yoshimoto K, Ohsumi Y (2007) An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. Plant Physiol 143(3):1132–1139PubMedCrossRefGoogle Scholar
  23. Fujioka Y, Noda NN, Fujii K, Yoshimoto K, Ohsumi Y, Inagaki F (2008) In vitro reconstitution of plant Atg8 and Atg12 conjugation systems essential for autophagy. J Biol Chem 283(4):1921–1928PubMedCrossRefGoogle Scholar
  24. Galili G, Altschuler Y, Levanony H (1993) Assembly and transport of seed storage proteins. Trends Cell Biol 3(12):437–442PubMedCrossRefGoogle Scholar
  25. Gao W, Kang JH, Liao Y, Ding WX, Gambotto AA, Watkins SC, Liu YJ, Stolz DB, Yin XM (2010) Biochemical isolation and characterization of the tubulovesicular LC3-positive autophagosomal compartment. J Biol Chem 285(2):1371–1383PubMedCrossRefGoogle Scholar
  26. Hanaoka H, Noda T, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Ohsumi Y (2002) Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol 129(3):1181–1193PubMedCrossRefGoogle Scholar
  27. Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A (2009) A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 11(12):1433–1437PubMedCrossRefGoogle Scholar
  28. Hayward AP, Dinesh-Kumar SP (2010) What can plant autophagy do for an innate immune response? Annu Rev Phytopathol 49:4.1–4.20Google Scholar
  29. Hayward AP, Tsao J, Dinesh-Kumar SP (2009) Autophagy and plant innate immunity: defense through degradation. Semin Cell Dev Biol 20(9):1041–1047PubMedCrossRefGoogle Scholar
  30. Herman EM, Larkins BA (1999) Protein storage bodies and vacuoles. Plant Cell 11(4):601–614PubMedCrossRefGoogle Scholar
  31. Hillmer S, Movafeghi A, Robinson DG, Hinz G (2001) Vacuolar storage proteins are sorted in the cis-cisternae of the pea cotyledon Golgi apparatus. J Cell Biol 152(1):41–50PubMedCrossRefGoogle Scholar
  32. Hofius D, Schultz-Larsen T, Joensen J, Tsitsigiannis DI, Petersen NH, Mattsson O, Jørgensen LB, Jones JD, Mundy J, Petersen M (2009) Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 137(4):773–783PubMedCrossRefGoogle Scholar
  33. Hofmann NR (2011) How a transient response becomes transient: autophagy cleans up after abscisic acid. Plant Cell 23(2):429Google Scholar
  34. Inoue Y, Suzuki T, Hattori M, Yoshimoto K, Ohsumi Y, Moriyasu Y (2006) AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells. Plant Cell Physiol 47(12):1641–1652PubMedCrossRefGoogle Scholar
  35. Ishida H, Yoshimoto K, Izumi M, Reisen D, Yano Y, Makino A, Ohsumi Y, Hanson MR, Mae T (2008) Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiol 148(1):142–155PubMedCrossRefGoogle Scholar
  36. Itakura E, Kishi C, Inoue K, Mizushima N (2008) Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 19(12):5360–5372PubMedCrossRefGoogle Scholar
  37. Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7(3):279–296PubMedCrossRefGoogle Scholar
  38. Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2010) mTOR regulation of autophagy. FEBS Lett 584(7):1287–1295PubMedCrossRefGoogle Scholar
  39. Kametaka S, Okano T, Ohsumi M, Ohsumi Y (1998) Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. J Biol Chem 273(35):22284–22291PubMedCrossRefGoogle Scholar
  40. Ketelaar T, Voss C, Dimmock SA, Thumm M, Hussey PJ (2004) Arabidopsis homologues of the autophagy protein Atg8 are a novel family of microtubule binding proteins. FEBS Lett 567(2–3):302–306PubMedCrossRefGoogle Scholar
  41. Kihara A, Noda T, Ishihara N, Ohsumi Y (2001) Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 152(3):519–530PubMedCrossRefGoogle Scholar
  42. Kirkin V, Lamark T, Sou YS, Bjørkøy G, Nunn JL, Bruun JA, Shvets E, McEwan DG, Clausen TH, Wild P, Bilusic I, Theurillat JP, Øvervatn A, Ishii T, Elazar Z, Komatsu M, Dikic I, Johansen T (2009a) A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 33(4):505–516PubMedCrossRefGoogle Scholar
  43. Kirkin V, McEwan DG, Novak I, Dikic I (2009b) A role for ubiquitin in selective autophagy. Mol Cell 34(3):259–269PubMedCrossRefGoogle Scholar
  44. Kittler JT, Rostaing P, Schiavo G, Fritschy JM, Olsen R, Triller A, Moss SJ (2001) The subcellular distribution of GABARAP and its ability to interact with NSF suggest a role for this protein in the intracellular transport of GABA(A) receptors. Mol Cell Neurosci 18(1):13–25PubMedCrossRefGoogle Scholar
  45. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169(3):425–434PubMedCrossRefGoogle Scholar
  46. Krick R, Henke S, Tolstrup J, Thumm M (2008) Dissecting the localization and function of Atg18, Atg21 and Ygr223c. Autophagy 4(7):896–910PubMedGoogle Scholar
  47. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432(7020):1032–1036PubMedCrossRefGoogle Scholar
  48. Kwon SI, Park OK (2008) Autophagy in plants. J Plant Biol 51(5):313–320CrossRefGoogle Scholar
  49. Lamark T, Johansen T (2010) Autophagy: links with the proteasome. Curr Opin Cell Biol 22(2):192–198PubMedCrossRefGoogle Scholar
  50. Lenz HD, Haller E, Melzer E, Kober K, Wurster K, Stahl M, Bassham DC, Vierstra RD, Parker JE, Bautor J, Molina A, Escudero V, Shindo T, van der Hoorn RA, Gust AA, Nürnberger T (2011) Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. Plant J 66(5):818–830Google Scholar
  51. Liu Y, Schiff M, Czymmek K, Tallóczy Z, Levine B, Dinesh-Kumar SP (2005) Autophagy regulates programmed cell death during the plant innate immune response. Cell 121(4):567–577PubMedCrossRefGoogle Scholar
  52. Liu Y, Xiong Y, Bassham DC (2009) Autophagy is required for tolerance of drought and salt stress in plants. Autophagy 5(7):954–963PubMedCrossRefGoogle Scholar
  53. Love AJ, Milner JJ, Sadanandom A (2008) Timing is everything: regulatory overlap in plant cell death. Trends Plant Sci 13(11):589–595PubMedCrossRefGoogle Scholar
  54. Mann SS, Hammarback JA (1994) Molecular characterization of light chain 3. A microtubule binding subunit of MAP1A and MAP1B. J Biol Chem 269(15):11492–11497PubMedGoogle Scholar
  55. Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, Akira S, Noda T, Yoshimori T (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11(4):385–396PubMedCrossRefGoogle Scholar
  56. Matsunaga K, Morita E, Saitoh T, Akira S, Ktistakis NT, Izumi T, Noda T, Yoshimori T (2010) Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. J Cell Biol 190(4):511–521PubMedCrossRefGoogle Scholar
  57. Meijer WH, van der Klei IJ, Veenhuis M, Kiel JA (2007) ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes. Autophagy 3(2):106–116PubMedGoogle Scholar
  58. Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, Meyer C, Robaglia C (2002) Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc Natl Acad Sci U S A 99(9):6422–6427PubMedCrossRefGoogle Scholar
  59. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Fernández E, Fukuzawa H, González-Ballester D, González-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Riaño-Pachón DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martínez D, Ngau WC, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318(5848):245–250PubMedCrossRefGoogle Scholar
  60. Mohrlüder J, Hoffmann Y, Stangler T, Hänel K, Willbold D (2007a) Identification of clathrin heavy chain as a direct interaction partner for the gamma-aminobutyric acid type A receptor associated protein. Biochemistry 46(50):14537–14543PubMedCrossRefGoogle Scholar
  61. Mohrlüder J, Stangler T, Hoffmann Y, Wiesehan K, Mataruga A, Willbold D (2007b) Identification of calreticulin as a ligand of GABARAP by phage display screening of a peptide library. FEBS J 274(21):5543–5555PubMedCrossRefGoogle Scholar
  62. Nakatogawa H, Ichimura Y, Ohsumi Y (2007) Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130(1):165–178PubMedCrossRefGoogle Scholar
  63. Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T, Komatsu M, Otsu K, Tsujimoto Y, Shimizu S (2009) Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461(7264):654–658PubMedCrossRefGoogle Scholar
  64. Noda NN, Kumeta H, Nakatogawa H, Satoo K, Adachi W, Ishii J, Fujioka Y, Ohsumi Y, Inagaki F (2008) Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13(12):1211–1218PubMedCrossRefGoogle Scholar
  65. Noda NN, Ohsumi Y, Inagaki F (2010) Atg8-family interacting motif crucial for selective autophagy. FEBS Lett 584(7):1379–1385PubMedCrossRefGoogle Scholar
  66. Ohashi Y, Munro S (2010) Membrane delivery to the yeast autophagosome from the Golgi-endosomal system. Mol Biol Cell 21(22):3998–4008PubMedCrossRefGoogle Scholar
  67. Okamoto T, Toyooka K, Minamikawa T (2001) Identification of a membrane-associated cysteine protease with possible dual roles in the endoplasmic reticulum and protein storage vacuole. J Biol Chem 276(1):742–751PubMedCrossRefGoogle Scholar
  68. Okamoto K, Kondo-Okamoto N, Ohsumi Y (2009) Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell 17(1):87–97PubMedCrossRefGoogle Scholar
  69. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Øvervatn A, Bjørkøy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282(33):24131–24145PubMedCrossRefGoogle Scholar
  70. Pankiv S, Alemu EA, Brech A, Bruun JA, Lamark T, Overvatn A, Bjørkøy G, Johansen T (2010) FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J Cell Biol 188(2):253–269PubMedCrossRefGoogle Scholar
  71. Pérez-Pérez ME, Florencio FJ, Crespo JL (2010) Inhibition of target of rapamycin signaling and stress activate autophagy in Chlamydomonas reinhardtii. Plant Physiol 152(4):1874–1888PubMedCrossRefGoogle Scholar
  72. Phillips AR, Suttangkakul A, Vierstra RD (2008) The ATG12-conjugating enzyme ATG10 Is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics 178(3):1339–1353PubMedCrossRefGoogle Scholar
  73. Polson HE, de Lartigue J, Rigden DJ, Reedijk M, Urbé S, Clague MJ, Tooze SA (2010) Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 6(4):506–522CrossRefGoogle Scholar
  74. Qin G, Ma Z, Zhang L, Xing S, Hou X, Deng J, Liu J, Chen Z, Qu LJ, Gu H (2007) Arabidopsis AtBECLIN 1/AtAtg6/AtVps30 is essential for pollen germination and plant development. Cell Res 17(3):249–263PubMedGoogle Scholar
  75. Reumann S, Voitsekhovskaja O, Lillo C (2010) From signal transduction to autophagy of plant cell organelles: lessons from yeast and mammals and plant-specific features. Protoplasma 247(3–4):233–256PubMedCrossRefGoogle Scholar
  76. Reyes FC, Chung T, Holding D, Jung R, Vierstra R, Otegui MS (2011) Delivery of prolamins to the protein storage vacuole in maize aleurone cells. Plant Cell 23(2):769–784PubMedCrossRefGoogle Scholar
  77. Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134(4):1683–1696PubMedCrossRefGoogle Scholar
  78. Robinson D, Hinz G (1999) Golgi-mediated transport of seed storage proteins. Seed Sci Res 9:267–283CrossRefGoogle Scholar
  79. Robinson DG, Bäumer M, Hinz G, Hohl I (1997) Ultrastructure of the pea cotyledon Golgi apparatus: origin of dense vesicles and the action of brefeldin A. Protolplasma 200:198–209CrossRefGoogle Scholar
  80. Robinson D, Galili G, Herman E, Hillmer S (1998) Topical aspects of vacuolar protein transport: autophagy and prevacuolar compartments. J Exp Bot 49(325):1263–1270CrossRefGoogle Scholar
  81. Sagiv Y, Legesse-Miller A, Porat A, Elazar Z (2000) GATE-16, a membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28. EMBO J 19(4):1494–1504PubMedCrossRefGoogle Scholar
  82. Satoo K, Noda NN, Kumeta H, Fujioka Y, Mizushima N, Ohsumi Y, Inagaki F (2009) The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J 28(9):1341–1350PubMedCrossRefGoogle Scholar
  83. Schwarten M, Mohrlüder J, Ma P, Stoldt M, Thielmann Y, Stangler T, Hersch N, Hoffmann B, Merkel R, Willbold D (2009) Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy. Autophagy 5(5):690–698PubMedCrossRefGoogle Scholar
  84. Shin JH, Yoshimoto K, Ohsumi Y, Jeon JS, An G (2009) OsATG10b, an autophagosome component, is needed for cell survival against oxidative stresses in rice. Mol Cells 27(1):67–74PubMedCrossRefGoogle Scholar
  85. Shintani T, Huang WP, Stromhaug PE, Klionsky DJ (2002) Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev. Cell 3:825–837Google Scholar
  86. Shintani T, Mizushima N, Ogawa Y, Matsuura A, Noda T, Ohsumi Y (1999) Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J 18(19):5234–5241PubMedCrossRefGoogle Scholar
  87. Sláviková S, Shy G, Yao Y, Glozman R, Levanony H, Pietrokovski S, Elazar Z, Galili G (2005) The autophagy-associated Atg8 gene family operates both under favourable growth conditions and under starvation stresses in Arabidopsis plants. J Exp Bot 56(421):2839–2849PubMedCrossRefGoogle Scholar
  88. Sláviková S, Ufaz S, Avin-Wittenberg T, Levanony H, Galili G (2008) An autophagy-associated Atg8 protein is involved in the responses of Arabidopsis seedlings to hormonal controls and abiotic stresses. J Exp Bot 59(14):4029–4043PubMedCrossRefGoogle Scholar
  89. Su W, Ma H, Liu C, Wu J, Yang J (2006) Identification and characterization of two rice autophagy associated genes, OsAtg8 and OsAtg4. Mol Biol Rep 33(4):273–278PubMedCrossRefGoogle Scholar
  90. Sun Q, Fan W, Chen K, Ding X, Chen S, Zhong Q (2008) Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A 105(49):19211–19216PubMedCrossRefGoogle Scholar
  91. Suzuki K, Ohsumi Y (2010) Current knowledge of the pre-autophagosomal structure (PAS). FEBS Lett 584(7):1280–1286PubMedCrossRefGoogle Scholar
  92. Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y (2001) The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 20(21):5971–5981PubMedCrossRefGoogle Scholar
  93. Svenning S, Lamark T, Krause K, Johansen T (2011) Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1. Autophagy 7(9):1–18.Google Scholar
  94. Tanida I (2011) Autophagosome formation and molecular mechanism of autophagy. Antioxid Redox Signal 14(11):2201–2214PubMedCrossRefGoogle Scholar
  95. Thompson AR, Vierstra RD (2005) Autophagic recycling: lessons from yeast help define the process in plants. Curr Opin Plant Biol 8(2):165–173PubMedCrossRefGoogle Scholar
  96. Thompson AR, Doelling JH, Suttangkakul A, Vierstra RD (2005) Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol 138(4):2097–2110PubMedCrossRefGoogle Scholar
  97. Tooze SA, Yoshimori T (2010) The origin of the autophagosomal membrane. Nat Cell Biol 12(9):831–835PubMedCrossRefGoogle Scholar
  98. Toyooka K, Okamoto T, Minamikawa T (2000) Mass transport of proform of a KDEL-tailed cysteine proteinase (SH-EP) to protein storage vacuoles by endoplasmic reticulum-derived vesicle is involved in protein mobilization in germinating seeds. J Cell Biol 148(3):453–464PubMedCrossRefGoogle Scholar
  99. Toyooka K, Okamoto T, Minamikawa T (2001) Cotyledon cells of Vigna mungo seedlings use at least two distinct autophagic machineries for degradation of starch granules and cellular components. J Cell Biol 154(5):973–982PubMedCrossRefGoogle Scholar
  100. Vanhee C, Zapotoczny G, Masquelier D, Ghislain M, Batoko H (2011) The Arabidopsis multistress regulator TSPO is a heme binding membrane protein and a potential scavenger of porphyrins via an autophagy-dependent degradation mechanism. Plant Cell 23(2):785–805PubMedCrossRefGoogle Scholar
  101. Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A (2009) Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol 149(2):885–893PubMedCrossRefGoogle Scholar
  102. Wang H, Bedford FK, Brandon NJ, Moss SJ, Olsen RW (1999) GABA(A)-receptor-associated protein links GABA(A) receptors and the cytoskeleton. Nature 397(6714):69–72PubMedCrossRefGoogle Scholar
  103. Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V, Elazar Z (2010) LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J 29(11):1792–1802PubMedCrossRefGoogle Scholar
  104. Winter V, Stoger E (2011) The formation, function and fate of protein storage compartments in seeds. Protoplasma (in press)Google Scholar
  105. Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9(10):1102–1109PubMedCrossRefGoogle Scholar
  106. Xiong Y, Contento AL, Bassham DC (2005) AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant J 42(4):535–546PubMedCrossRefGoogle Scholar
  107. Xiong Y, Contento AL, Nguyen PQ, Bassham DC (2007) Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol 143(1):291–299PubMedCrossRefGoogle Scholar
  108. Yamada Y, Suzuki NN, Hanada T, Ichimura Y, Kumeta H, Fujioka Y, Ohsumi Y, Inagaki F (2007) The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation. J Biol Chem 282(11):8036–8043PubMedCrossRefGoogle Scholar
  109. Yamaguchi M, Noda NN, Nakatogawa H, Kumeta H, Ohsumi Y, Inagaki F (2010) Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3–Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway. J Biol Chem 285(38):29599–29607PubMedCrossRefGoogle Scholar
  110. Yen WL, Legakis JE, Nair U, Klionsky DJ (2007) Atg27 is required for autophagy-dependent cycling of Atg9. Mol Biol Cell 18(2):581–593PubMedCrossRefGoogle Scholar
  111. Ylä-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL (2009) 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5(8):1180–1185PubMedCrossRefGoogle Scholar
  112. Yoshimoto K, Hanaoka H, Sato S, Kato T, Tabata S, Noda T, Ohsumi Y (2004) Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 16(11):2967–2983PubMedCrossRefGoogle Scholar
  113. Yoshimoto K, Takano Y, Sakai Y (2010) Autophagy in plants and phytopathogens. FEBS Lett 584(7):1350–1358PubMedCrossRefGoogle Scholar
  114. Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, Heintz N, Yue Z (2009) Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1–phosphatidylinositol-3-kinase complex. Nat Cell Biol 11(4):468–476PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Plant SciencesWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations