, Volume 249, Issue 1, pp 207–215 | Cite as

Telomere and 45S rDNA sequences are structurally linked on the chromosomes in Chrysanthemum segetum L.

  • Jun Li
  • Shibin He
  • Lu Zhang
  • Yong Hu
  • Fei Yang
  • Lu Ma
  • Jing Huang
  • Lijia Li
Original Article


Some reports have shown that nucleolar organizer regions are located at the telomeric region and have a structural connection with telomeres at the cellular level in many organisms. In this study, we found that all 45S ribosomal DNA (rDNA) signals were located at telomeric regions on the chromosomes in Chrysanthemum segetum L., and the 45S rDNA showed distinct signal patterns on different metaphase chromosome spreads. The bicolor fluorescence in situ hybridization experiment on the extended fibers revealed that telomere repeats were structurally connected with or interspersed into rDNA sequences. The close cytological structure relation between rDNA and telomere sequences led us to use PCR with combinations of the telomere primer and the rDNA primer to obtain some fragments, which were flanked by different rDNA and telomere primer sequences. One representative clone CHS2 contains closely connected rDNA and telomere sequences, suggesting that the telomere sequence invaded into the conserved rDNA sequence. In addition, the sequences of some PCR clones were flanked by the single telomeric primer sequence or the rDNA primer sequence. These results suggested that homologous recombination occurred between tandem repeat units of rDNA sequences or telomere repeats at the chromosome terminus.


Telomere rDNA Chrysanthemum segetum L. Fluorescence in situ hybridization 



Alternative lengthening of telomeres


Double-strand breakage


Fluorescence in situ hybridization


Interstitial telomere repeats


Internal transcribed spacer


Nucleolar organizer regions



This work was supported by the NSFC (nos. 30870261 and 30771204), the National Genetically Modified Organism Breeding Major Project (no. 200908010-008B), the Research Fund for the Doctoral Program of Higher Education (no. 20090141110031), and the Fundamental Research Funds for the Central Universities (no. 3081003).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alvarez-Castellanos PP, Bishop CD, Pascual-Villalobos MJ (2001) Antifungal activity of the essential oil of flowerheads of garland chrysanthemum (Chrysanthemum coronarium) against agricultural pathogens. Phytochemistry 57:99–102PubMedCrossRefGoogle Scholar
  2. Armstrong SJ, Franklin FC, Jones GH (2001) Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana. J Cell Sci 114:4207–4217PubMedGoogle Scholar
  3. Azzalin CM, Nergadze SG, Giulotto E (2001) Human intrachromosomal telomeric-like repeats: sequence organization and mechanisms of origin. Chromosoma 110:75–82PubMedCrossRefGoogle Scholar
  4. Caperta AD, Neves N, Viegas W, Pikaard CS, Preuss S (2007) Relationships between transcription, silver staining, and chromatin organization of nucleolar organizers in Secale cereale. Protoplasma 232: 55-59Google Scholar
  5. Castiglione MR, Venora G, Ravalli C, Stoilov L, Gecheff K, Cremonini R (2008) DNA methylation and chromosomal rearrangements in reconstructed karyotypes of Hordeum vulgare L. Protoplasma 232: 215-222Google Scholar
  6. Copenhaver GP, Pikaard CS (1996) RFLP and physical mapping with an rDNA-specific endonuclease reveals that nucleolus organizer regions of Arabidopsis thaliana adjoin the telomeres on chromosomes 2 and 4. Plant J 9:259–272PubMedCrossRefGoogle Scholar
  7. Dobigny G, Ozouf-Costaz C, Bonillo C, Volobouev V (2003) Evolution of rRNA gene clusters and telomeric repeats during explosive genome repatterning in Taterillus X (Rodentia, Gerbillinae). Cytogenet Genome Res 103:94–103PubMedCrossRefGoogle Scholar
  8. Dvorácková M, Rossignol P, Shaw PJ, Koroleva OA, Doonan JH, Fajkus J (2010) AtTRB1, a telomeric DNA-binding protein from Arabidopsis, is concentrated in the nucleolus and shows highly dynamic association with chromatin. Plant J 61:637–649PubMedCrossRefGoogle Scholar
  9. Fajkus J, Sykorová E, Leitch AR (2005) Telomeres in evolution and evolution of telomeres. Chromosome Res 13:469–479PubMedCrossRefGoogle Scholar
  10. Fajkus J, Leitch AR, Chester M, Sýkorová E (2008) Evolution, composition and interrelated functions of telomeres and subtelomeres: lesson from plants. In: Nosek J, Tomaska L (eds) Origin and evolution of telomeres. Landes Bioscience, Austin, pp 114–127Google Scholar
  11. Garcia S, Garnatje T, Pellicer J, McArthur ED, Siljak-Yakovlev S, Vallès J (2009) Ribosomal DNA, heterochromatin, and correlation with genome size in diploid and polyploid North American endemic sagebrushes (Artemisia, Asteraceae). Genome 52:1012–1024PubMedCrossRefGoogle Scholar
  12. Hasterok R, Jenkins G, Langdon T, Jones RN, Maluszynska J (2001) Ribosomal DNA is an effective marker of Brassica chromosomes. Theor Appl Genet 103:486–490CrossRefGoogle Scholar
  13. Huang J, Brito IL, Villen J, Gygi SP, Amon A, Moazed D (2006) Inhibition of homologous recombination by a cohesin-associated clamp complex recruited to the rDNA recombination enhancer. Genes Dev 20:2887–2901PubMedCrossRefGoogle Scholar
  14. Huang J, Ma L, Yang F, Fei S, Li L (2008) 45S rDNA regions are chromosome fragile sites expressed as gaps in vitro on metaphase chromosomes of root-tip meristematic cells in Lolium spp. PLoS One 3:e2167PubMedCrossRefGoogle Scholar
  15. Huang J, Ma L, Sundararajan S, Fei SZ, Li L (2009) Visualization by atomic force microscopy and FISH of the 45S rDNA gaps in mitotic chromosomes of Lolium perenne. Protoplasma 236:59–65PubMedCrossRefGoogle Scholar
  16. Li LJ, Arumuganathan K, Rines HW, Phillips RL, Riera-Lizarazu O, Sandhu D, Zhou Y, Gill KS (2001) Flow cytometric sorting of maize chromosome 9 from an oat–maize chromosome addition line. Thero Appl Genet 102:658–663CrossRefGoogle Scholar
  17. Li L, Yang J, Tong Q, Zhao L, Song Y (2005) A novel approach to prepare extended DNA fibers in plants. Cytom A 63:114–117CrossRefGoogle Scholar
  18. Linardopoulou EV, Williams EM, Fan Y, Friedman C, Young JM, Trask BJ (2005) Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature 437: 94–100Google Scholar
  19. Liu WS, Fredga K (1999) Telomeric (TTAGGG) n sequences are associated with nucleolus organizer regions (NORs) in the wood lemming. Chromosome Res 7:235–240PubMedCrossRefGoogle Scholar
  20. Manevski A, Bertoni G, Bardet C, Tremousaygue D, Lescure B (2000) In synergy with various cis-acting elements, plant insterstitial telomere motifs regulate gene expression in Arabidopsis root meristems. FEBS Lett 483:43–46PubMedCrossRefGoogle Scholar
  21. Meyne J, Baker RJ, Hobart HH, Hsu TC, Ryder OA, Ward OG, Wiley JE, Wurster-Hill DH, Yates TL, Moyzis RK (1990) Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma 99:3–10PubMedCrossRefGoogle Scholar
  22. Nergadze SG, Rocchi M, Azzalin CM, Mondello C, Giulotto E (2004) Insertion of telomeric repeats at intrachromosomal break sites during primate evolution. Genome Res 14:1704–1710PubMedCrossRefGoogle Scholar
  23. Nosek J, Kosa P, Tomaska L (2006) On the origin of telomeres: a glimpse at the pre-telomerase world. BioEssays 28:182–190PubMedCrossRefGoogle Scholar
  24. Ochocka RJ, Rajzer D, Kowalski P, Lamparczyk H (1995) Determination of coumarins from Chrysanthenum segetum L. by capillary electrophoresis. J Chromatogr A 709:197–202CrossRefGoogle Scholar
  25. Perez MP, Navas-Cortes JA, Pascual-Villalobos MJ, Castillo P (2003) Nematicidal activity of essential oils and organic amendments from Asteraceae against root-knot nematodes. Plant Pathol 52:395–401CrossRefGoogle Scholar
  26. Pich U, Fuchs J, Schubert I (1996) How do Alliaceae stabilize their chromosome ends in the absence of TTTAGGG sequences? Chromosome Res 4:207–213PubMedCrossRefGoogle Scholar
  27. Preuss S, Pikaard CS (2007) rRNA gene silencing and nucleolar dominance: insights into a chromosome-scale epigenetic on/off switch. Biochim Biophys Acta 1769:383–392PubMedGoogle Scholar
  28. Rakotoarisoa G, Hirai Y, Go Y, Kawamoto Y, Shima T, Koyama N, Randrianjafy A, Mora R, Hirai H (2000) Chromosomal localization of 18S rDNA and telomere sequence in the aye-aye, Daubentonia madagascariensis. Genes Genet Syst 75:299–303PubMedCrossRefGoogle Scholar
  29. Richard GF, Paques F (2000) Mini-and microsatellite expansions: the recombination connection. EMBO Rep 1:122–126PubMedCrossRefGoogle Scholar
  30. Rudd MK, Friedman C, Parghi SS, Linardopoulou EV, Hsu L, Trask BJ (2007) Elevated Rates of Sister Chromatid Exchange at Chromosome Ends. PLoS Genet 3: e32Google Scholar
  31. Ruiz-Herrera A, García F, Giulotto E, Attolini C, Egozcue J, Ponsà M, Garcia M (2005) Evolutionary breakpoints are co-localized with fragile sites and intrachromosomal telomeric sequences in primates. Cytogenet Genome Res 108:234–247PubMedCrossRefGoogle Scholar
  32. Schubert I, Wobus U (1985) In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 92:143–148CrossRefGoogle Scholar
  33. Sýkorová E, Fajkus J, Mezníková M, Lim KY, Neplechová K, Blattner FR, Chase MW, Leitch AR (2006) Minisatellite telomeres occur in the family Alliaceae but are lost in Allium. Am J Bot 93:814–823PubMedCrossRefGoogle Scholar
  34. Thomas HM, Harper JA, Morgan WG (2001) Gross chromosome rearrangements are occurring in an accession of the grass Lolium rigidum. Chromosome Res 9:585–590PubMedCrossRefGoogle Scholar
  35. Tsujimoto H (1999) De novo synthesis of telomere sequences at the healed breakpoints of wheat deletion chromosomes. Mol Genet Genomics 262:851–856CrossRefGoogle Scholar
  36. Tsujimoto H, Yamada T, Sasakuma T (1997) Molecular structure of a wheat chromosome end healed after gametocidal gene-induced breakage. Proc Natl Acad Sci USA 94:3140–3144PubMedCrossRefGoogle Scholar
  37. Upcroft JA, Abedinia M, Upcroft P (2005) Rearranged subtelomeric rRNA genes in Giardia duodenalis. Eukaryot Cell 4:484–486PubMedCrossRefGoogle Scholar
  38. Yu W, Lamb JC, Han F, Birchler JA (2006) Telomere-mediated chromosomal truncation in maize. Proc Natl Acad Sci USA 103:17331–17336PubMedCrossRefGoogle Scholar
  39. Zhdanova NS, Minina JM, Karamisheva TV, Draskovic I, Rubtsov NB, Londono-Vallejo JA (2007) The very long telomeres in Sorex granarius (Soricidae, Eulipothyphla) contain ribosomal DNA. Chromosome Res 15:881–890PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jun Li
    • 1
  • Shibin He
    • 1
  • Lu Zhang
    • 1
  • Yong Hu
    • 1
  • Fei Yang
    • 1
  • Lu Ma
    • 1
  • Jing Huang
    • 1
  • Lijia Li
    • 1
  1. 1.State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations