, Volume 248, Issue 4, pp 641–650 | Cite as

The apicoplast

  • Geoffrey Ian McFaddenEmail author


Parasites like malaria and Toxoplasma possess a vestigial plastid homologous to the chloroplasts of plants. The plastid (known as the apicoplast) is non-photosynthetic but retains many hallmarks of its ancestry including a circular genome that it synthesises proteins from and a suite of biosynthetic pathways of cyanobacterial origin. In this review, the discovery of the apicoplast and its integration, function and purpose are explored. New insights into the apicoplast fatty acid biosynthesis pathway and some novel roles of the apicoplast in vaccine development are reviewed.


Apicoplast Endosymbiosis Malaria Plasmodium Plastid Toxoplasma 



Endoplasmic reticulum


Endoplasmic reticulum-associated protein degradation


Plastidic phosphate translocators


Symbiont-specific ERAD-like machinery



GIM is an Australian Research Council Federation Fellow and a Howard Hughes International Research Scholar. Program Grant support from the National Health and Medical Research Council of Australia is gratefully acknowledged. The Australian Red Cross generously supplied human red blood cells for our research. I thank Giel van Dooren for suggestions on the manuscript and for pointing out the likely apicoplast ubiquitin.

Conflict of interest

The author declares that he has no conflict of interest.


  1. Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, Buck GA, Xu P, Bankier AT, Dear PH, Konfortov BA, Spriggs HF, Iyer L, Anantharaman V, Aravind L, Kapur V (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304:441–445. doi: 10.1126/science.1094786 PubMedGoogle Scholar
  2. Agrawal S, van Dooren GG, Beatty WL, Striepen B (2009) Genetic evidence that an endosymbiont-derived endoplasmic reticulum-associated protein degradation (ERAD) system functions in import of apicoplast proteins. J Biol Chem 284:33683–33691. doi: 10.1074/jbc.M109.044024 PubMedGoogle Scholar
  3. Aldritt SM, Joseph JT, Wirth DF (1989) Sequence identification of cytochrome b in Plasmodium gallinaceum. Mol Cell Biol 9:3614–3620PubMedGoogle Scholar
  4. Bagola K, Mehnert M, Jarosch E, Sommer T (2010) Protein dislocation from the ER. Biochim Biophys Acta. doi: 10.1016/j.bbamem.2010.06.025 PubMedGoogle Scholar
  5. Bohnsack MT, Schleiff E (2010) The evolution of protein targeting and translocation systems. Biochim Biophys Acta 1803:1115–1130. doi: 10.1016/j.bbamcr.2010.06.005 PubMedGoogle Scholar
  6. Bolte K, Bullmann L, Hempel F, Bozarth A, Zauner S, Maier UG (2009) Protein targeting into secondary plastids. J Eukaryot Microbiol 56:9–15. doi: 10.1111/j.1550-7408.2008.00370.x PubMedGoogle Scholar
  7. Borst P, Overdlve JP, Weijers PJ, Fase-Fowler F, Berg MVD (1984) DNA circles with cruciforms from Isospora (Toxoplasma) gondii. Biochim Biophys Acta 781:100–111PubMedGoogle Scholar
  8. Brooks CF, Johnsen H, van Dooren GG, Muthalagi M, Lin SS, Bohne W, Fischer K, Striepen B (2010) The Toxoplasma apicoplast phosphate translocator links cytosolic and apicoplast metabolism and is essential for parasite survival. Cell Host Microbe 7:62–73. doi: 10.1016/j.chom.2009.12.002 PubMedGoogle Scholar
  9. Bullmann L, Haarmann R, Mirus O, Bredemeier R, Hempel F, Maier UG, Schleiff E (2010) Filling the gap, evolutionarily conserved Omp85 in plastids of chromalveolates. J Biol Chem 285:6848–6856. doi: 10.1074/jbc.M109.074807 PubMedGoogle Scholar
  10. Cai X, Fuller AL, McDougald LR, Zhu G (2003) Apicoplast genome of the coccidian Eimeria tenella. Gene 321:39–46PubMedGoogle Scholar
  11. Clyde DF, Most H, McCarthy VC, Vanderberg JP (1973) Immunization of man against sporozoite-induced falciparum malaria. Am J Med Sci 266:169–177PubMedGoogle Scholar
  12. DeRocher A, Hagen CB, Froehlich JE, Feagin JE, Parsons M (2000) Analysis of targeting sequences demonstrates that trafficking to the Toxoplasma gondii plastid branches off the secretory system. J Cell Sci 113(Pt 22):3969–3977PubMedGoogle Scholar
  13. DeRocher A, Gilbert B, Feagin JE, Parsons M (2005) Dissection of brefeldin A-sensitive and -insensitive steps in apicoplast protein targeting. J Cell Sci 118:565–574. doi: 10.1242/jcs.01627 PubMedGoogle Scholar
  14. DeRocher AE, Coppens I, Karnataki A, Gilbert LA, Rome ME, Feagin JE, Bradley PJ, Parsons M (2008) A thioredoxin family protein of the apicoplast periphery identifies abundant candidate transport vesicles in Toxoplasma gondii. Eukaryot Cell 7:1518–1529. doi: 10.1128/EC.00081-08 PubMedGoogle Scholar
  15. Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng L-T, Wu X, Reith M, Cavalier-Smith T, Maier U-G (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410:1091–1096PubMedGoogle Scholar
  16. Feagin JE (1992) The 6 kb element of Plasmodium falciparum encodes mitochondrial cytochrome genes. Mol Biochem Parasitol 52:145–148PubMedGoogle Scholar
  17. Fichera ME, Roos DS (1997) A plastid organelle as a drug target in apicomplexan parasites. Nature 390:407–409PubMedGoogle Scholar
  18. Foth BJ, Ralph SA, Tonkin CJ, Struck NS, Fraunholz M, Roos DS, Cowman AF, McFadden GI (2003) Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science 299:705–708PubMedGoogle Scholar
  19. Friesen J, Silvie O, Putrianti ED, Hafalla JC, Matuschewski K, Borrmann S (2010) Natural immunization against malaria: causal prophylaxis with antibiotics. Sci Transl Med 2:40ra49. doi: 10.1126/scitranslmed.3001058 PubMedGoogle Scholar
  20. Funes S, Davidson E, Reyes-Prieto A, Magallon S, Herion P, King MP, Gonzalez-Halphen D (2002) A green algal apicoplast ancestor. Science 298:2155PubMedGoogle Scholar
  21. Funes S, Reyes-Prieto A, Perez-Martinez X, Gonzalez-Halphen D (2004) On the evolutionary origins of apicoplasts: revisiting the rhodophyte vs. chlorophyte controversy. Microbes Infect 6:305–311PubMedGoogle Scholar
  22. Gardner MJ, Bates PA, Ling IT, Moore DJ, McCready S, Gunasekera MBR, Wilson RJM, Williamson DH (1988) Mitochondrial DNA of the human malarial parasite Plasmodium falciparum. Mol Biochem Parasitol 31:11–18PubMedGoogle Scholar
  23. Gardner MJ, Feagin JE, Moore DJ, Spencer DF, Gray MW, Williamson DH, Wilson RJ (1991a) Organisation and expression of small subunit ribosomal RNA genes encoded by a 35-kilobase circular DNA in Plasmodium falciparum. Mol Biochem Parasitol 48:77–88PubMedGoogle Scholar
  24. Gardner MJ, Williamson DH, Wilson RJM (1991b) A circular DNA in malaria parasites encodes an RNA polymerase like that of prokaryotes and chloroplasts. Mol Biochem Parasitol 44:115–123PubMedGoogle Scholar
  25. Gardner MJ, Feagin JE, Moore DJ, Rangachari K, Williamson DH, Wilson RJ (1993) Sequence and organization of large subunit rRNA genes from the extrachromosomal 35 kb circular DNA of the malaria parasite Plasmodium falciparum. Nucleic acids res 21:1067–1071PubMedGoogle Scholar
  26. Gardner MJ, Goldman N, Barnett P, Moore PW, Rangachari K, Strath M, Whyte A, Williamson DH, Wilson RJ (1994) Phylogenetic analysis of the rpoB gene from the plastid-like DNA of Plasmodium falciparum. Mol Biochem Parasitol 66:221–231PubMedGoogle Scholar
  27. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511PubMedGoogle Scholar
  28. Goodman CD, McFadden GI (2007) Fatty acid biosynthesis as a drug target in apicomplexan parasites. Curr Drug Targets 8:15–30PubMedGoogle Scholar
  29. Goodman CD, Su V, McFadden GI (2007) The effects of anti-bacterials on the malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 152:181–191. doi: 10.1016/j.molbiopara.2007.01.005 PubMedGoogle Scholar
  30. Gornicki P (2003) Apicoplast fatty acid biosynthesis as a target for medical intervention in apicomplexan parasites. Int J Parasitol 33:885–896PubMedGoogle Scholar
  31. Gould SB, Waller RF, McFadden GI (2008) Plastid evolution. Annu Rev Plant Biol 59:491–517. doi: 10.1146/annurev.arplant.59.032607.092915 PubMedGoogle Scholar
  32. Gross J, Bhattacharya D (2009) Mitochondrial and plastid evolution in eukaryotes: an outsiders’ perspective. Nat Rev Genet 10:495–505. doi: 10.1038/nrg2610 PubMedGoogle Scholar
  33. Harb OS, Chatterjee B, Fraunholz MJ, Crawford MJ, Nishi M, Roos DS (2004) Multiple functionally redundant signals mediate targeting to the apicoplast in the apicomplexan parasite Toxoplasma gondii. Eukaryot Cell 3:663–674PubMedGoogle Scholar
  34. He CY, Shaw MK, Pletcher CH, Striepen B, Tilney LG, Roos DS (2001) A plastid segregation defect in the protozoan parasite Toxoplasma gondii. EMBO J 20:330–339PubMedGoogle Scholar
  35. Hempel F, Bullmann L, Lau J, Zauner S, Maier UG (2009) ERAD-derived preprotein transport across the second outermost plastid membrane of diatoms. Mol Biol Evol 26:1781–1790. doi: 10.1093/molbev/msp079 PubMedGoogle Scholar
  36. Hempel F, Felsner G, Maier UG (2010) New mechanistic insights into pre-protein transport across the second outermost plastid membrane of diatoms. Mol Microbiol 76:793–801. doi: 10.1111/j.1365-2958.2010.07142.x PubMedGoogle Scholar
  37. Hopkins J, Fowler R, Krishna S, Wilson I, Mitchell G, Bannister L (1999) The plastid in Plasmodium falciparum asexual blood stages: a three-dimensional ultrastructural analysis. Protist 150:283–295PubMedGoogle Scholar
  38. Howe CJ (1992) Plastid origin of an extrachromosomal DNA molecule from Plasmodium, the causative agent of malaria. J Theor Biol 158:199–205PubMedGoogle Scholar
  39. Howe CJ, Barbrook AC, Lockhart PJ (2000) Organelle genes—do they jump or are they pushed? Trends Genet 16:65–66PubMedGoogle Scholar
  40. Huang CY, Ayliffe MA, Timmis JN (2003) Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature 422:72–76PubMedGoogle Scholar
  41. Inaba T, Alvarez-Huerta M, Li M, Bauer J, Ewers C, Kessler F, Schnell DJ (2005) Arabidopsis Tic110 is essential for the assembly and function of the protein import machinery of plastids. Plant Cell 17:1482–1496. doi: 10.1105/tpc.105.030700 PubMedGoogle Scholar
  42. Janouskovec J, Horak A, Obornik M, Lukes J, Keeling PJ (2010) A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci USA 107:10949–10954. doi: 10.1073/pnas.1003335107 PubMedGoogle Scholar
  43. Jomaa H, Wiesner J, Sanderbrand S, Altincicek B, Weidemeyer C, Hintz M, Turbachova I, Eberl M, Zeidler J, Lichtenthaler HK, Soldati D, Beck E (1999) Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285:1573–1576PubMedGoogle Scholar
  44. Kalanon M, Tonkin CJ, McFadden GI (2009) Characterization of two putative protein translocation components in the apicoplast of Plasmodium falciparum. Eukaryot Cell 8:1146–1154. doi: 10.1128/EC.00061-09 PubMedGoogle Scholar
  45. Karnataki A, Derocher A, Coppens I, Nash C, Feagin JE, Parsons M (2007a) Cell cycle-regulated vesicular trafficking of Toxoplasma APT1, a protein localized to multiple apicoplast membranes. Mol Microbiol 63:1653–1668. doi: 10.1111/j.1365-2958.2007.05619.x PubMedGoogle Scholar
  46. Karnataki A, Derocher AE, Coppens I, Feagin JE, Parsons M (2007b) A membrane protease is targeted to the relict plastid of Toxoplasma via an internal signal sequence. Traffic 8:1543–1553. doi: 10.1111/j.1600-0854.2007.00637.x PubMedGoogle Scholar
  47. Karnataki A, DeRocher AE, Feagin JE, Parsons M (2009) Sequential processing of the Toxoplasma apicoplast membrane protein FtsH1 in topologically distinct domains during intracellular trafficking. Mol Biochem Parasitol 166:126–133. doi: 10.1016/j.molbiopara.2009.03.004 PubMedGoogle Scholar
  48. Kessler F, Schnell D (2009) Chloroplast biogenesis: diversity and regulation of the protein import apparatus. Curr Opin Cell Biol 21:494–500. doi: 10.1016/ PubMedGoogle Scholar
  49. Kilejian A (1975) Circular mitochondrial DNA from the avian malarial parasite Plasmodium lophurae. Biochim Biophys Acta 390:276–284PubMedGoogle Scholar
  50. Kohler S (2005) Multi-membrane-bound structures of Apicomplexa: I. the architecture of the Toxoplasma gondii apicoplast. Parasitol Res 96:258–272. doi: 10.1007/s00436-005-1338-2 PubMedGoogle Scholar
  51. Köhler S, Delwiche CF, Denny PW, Tilney LG, Webster P, Wilson RJM, Palmer JD, Roos DS (1997) A plastid of probable green algal origin in apicomplexan parasites. Science 275:1485–1488PubMedGoogle Scholar
  52. Lim L, McFadden GI (2010) The evolution, metabolism and functions of the apicoplast. Phil Trans R Soc B 365:749–763PubMedGoogle Scholar
  53. Lim L, Kalanon M, McFadden GI (2009) New proteins in the apicoplast membranes: time to rethink apicoplast protein targeting. Trends Parasitol 25:197–200. doi: 10.1016/ PubMedGoogle Scholar
  54. Lim L, Linka M, Mullin KA, Weber AP, McFadden GI (2010) The carbon and energy sources of the non-photosynthetic plastid in the malaria parasite. FEBS Lett 584:549–554. doi: 10.1016/j.febslet.2009.11.097 PubMedGoogle Scholar
  55. Martin W (2003) Gene transfer from organelles to the nucleus: frequent and in big chunks. Proc Natl Acad Sci USA 100:8612–8614PubMedGoogle Scholar
  56. Martin W, Herrmann RG (1998) Gene transfer from organelles to the nucleus: how much, what happens, and why? Plant Physiol 118:9–17PubMedGoogle Scholar
  57. Mazumdar J, HW E, Masek K, AH C, Striepen B (2006) Apicoplast fatty acid synthesis is essential for organelle biogenesis and parasite survival in Toxoplasma gondii. Proc Natl Acad Sci USA 103:13192–13197. doi: 10.1073/pnas.0603391103 PubMedGoogle Scholar
  58. McCarthy JS, Good MF (2010) Whole parasite blood stage malaria vaccines: a convergence of evidence. Hum Vaccin 6:114–123PubMedGoogle Scholar
  59. McFadden GI, Roos DS (1999) Apicomplexan plastids as drug targets. Trends Microbiol 6:328–333Google Scholar
  60. McFadden GI, Waller RF (1997) Plastids in parasites of humans. BioEssays 19:1033–1040PubMedGoogle Scholar
  61. McFadden GI, Reith M, Munholland J, Lang-Unnasch N (1996) Plastid in human parasites. Nature 381:482PubMedGoogle Scholar
  62. McFadden GI, Waller RF, Reith M, Munholland J, Lang-Unnasch N (1997) Plastids in apicomplexan parasites. Pl Syst Evol [Suppl] 11:261–287Google Scholar
  63. Mehnert M, Sommer T, Jarosch E (2010) ERAD ubiquitin ligases: multifunctional tools for protein quality control and waste disposal in the endoplasmic reticulum. Bioessays 32:905–913. doi: 10.1002/bies.201000046 PubMedGoogle Scholar
  64. Moore RB, Obornik M, Janouskovec J, Chrudimsky T, Vancova M, Green DH, Wright SW, Davies NW, Bolch CJ, Heimann K, Slapeta J, Hoegh-Guldberg O, Logsdon JM, Carter DA (2008) A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451:959–963. doi: 10.1038/nature06635 PubMedGoogle Scholar
  65. Mullin KA, Lim L, Ralph SA, Spurck TP, Handman E, McFadden GI (2006) Membrane transporters in the relict plastid of malaria parasites. Proc Natl Acad Sci USA 103:9572–9577PubMedGoogle Scholar
  66. Nagaraj VA, Arumugam R, Gopalakrishnan B, Jyothsna YS, Rangarajan PN, Padmanaban G (2008) Unique properties of Plasmodium falciparum porphobilinogen deaminase. J Biol Chem 283:437–444. doi: 10.1074/jbc.M706861200 PubMedGoogle Scholar
  67. Nagaraj VA, Arumugam R, Chandra NR, Prasad D, Rangarajan PN, Padmanaban G (2009a) Localisation of Plasmodium falciparum uroporphyrinogen III decarboxylase of the heme-biosynthetic pathway in the apicoplast and characterisation of its catalytic properties. Int J Parasitol 39:559–568. doi: 10.1016/j.ijpara.2008.10.011 PubMedGoogle Scholar
  68. Nagaraj VA, Prasad D, Rangarajan PN, Padmanaban G (2009b) Mitochondrial localization of functional ferrochelatase from Plasmodium falciparum. Mol Biochem Parasitol 168:109–112PubMedGoogle Scholar
  69. Nagaraj VA, Arumugam R, Prasad D, Rangarajan PN, Padmanaban G (2010a) Protoporphyrinogen IX oxidase from Plasmodium falciparum is anaerobic and is localized to the mitochondrion. Mol Biochem Parasitol 174:44–52. doi: 10.1016/j.molbiopara.2010.06.012 PubMedGoogle Scholar
  70. Nagaraj VA, Prasad D, Arumugam R, Rangarajan PN, Padmanaban G (2010b) Characterization of coproporphyrinogen III oxidase in Plasmodium falciparum cytosol. Parasitol Int 59:121–127. doi: 10.1016/j.parint.2009.12.00110.1016/j.molbiopara.2009.05.008 PubMedGoogle Scholar
  71. Nussenzweig RS, Vanderberg J, Most H, Orton C (1967) Protective immunity produced by the injection of x-irradiated sporozoites of Plasmodium berghei. Nature 216:160–162PubMedGoogle Scholar
  72. Obornik M, Vancova M, Lai DH, Janouskovec J, Keeling PJ, Lukes J (2010) Morphology and ultrastructure of multiple life cycle stages of the photosynthetic relative of apicomplexa, Chromera velia. Protist. doi: 10.1016/j.protis.2010.02.004 Google Scholar
  73. Okamoto N, McFadden GI (2008) The mother of all parasites. Future Microbiol 3:391–395. doi: 10.2217/17460913.3.4.391 Google Scholar
  74. Okazaki K, Kabeya Y, Miyagishima S-Y (2010) The evolution of the regulatory mechanism of chloroplast division. Plant Signal Behaviour 5:164–167Google Scholar
  75. Ralph SA, D’Ombrain MC, McFadden GI (2001) The apicoplast as an antimalarial drug target. Drug Resist Updat 4:145–151PubMedGoogle Scholar
  76. Ralph SA, Foth BJ, Hall N, McFadden GI (2004a) Evolutionary pressures on apicoplast transit peptides. Mol Biol Evol 21:2183–2194PubMedGoogle Scholar
  77. Ralph SA, van Dooren GG, Waller RF, Crawford MJ, Fraunholz MJ, Foth BJ, Tonkin CJ, Roos DS, McFadden GI (2004b) Metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol 2:203–216. doi: 10.1038/nrmicro843 PubMedGoogle Scholar
  78. Roestenberg M, McCall M, Hopman J, Wiersma J, Luty AJ, van Gemert GJ, van de Vegte-Bolmer M, van Schaijk B, Teelen K, Arens T, Spaarman L, de Mast Q, Roeffen W, Snounou G, Renia L, van der Ven A, Hermsen CC, Sauerwein R (2009) Protection against a malaria challenge by sporozoite inoculation. N Engl J Med 361:468–477. doi: 10.1056/NEJMoa0805832 PubMedGoogle Scholar
  79. Sato S, Clough B, Coates L, Wilson RJ (2004) Enzymes for heme biosynthesis are found in both the mitochondrion and plastid of the malaria parasite Plasmodium falciparum. Protist 155:117–125PubMedGoogle Scholar
  80. Seeber F (2002) Biogenesis of iron–sulphur clusters in amitochondriate and apicomplexan protists. Int J Parasitol 32:1207–1217PubMedGoogle Scholar
  81. Seeber F (2003) Biosynthetic pathways of plastid-derived organelles as potential drug targets against parasitic apicomplexa. Curr Drug Targets Immune Endocr Metabol Disord 3:99–109PubMedGoogle Scholar
  82. Shanmugam D, Wu B, Ramirez U, Jaffe EK, Roos DS (2010) Plastid-associated porphobilinogen synthase from Toxoplasma gondii: kinetic and structural properties validate therapeutic potential. J Biol Chem 285:22122–22131. doi: 10.1074/jbc.M110.107243 PubMedGoogle Scholar
  83. Soll J, Schleiff E (2004) Protein import into chloroplasts. Nat Rev Mol Cell Biol 5:198–208PubMedGoogle Scholar
  84. Sommer MS, Gould SB, Lehmann P, Gruber A, Przyborski JM, Maier UG (2007) Der1-mediated preprotein import into the periplastid compartment of chromalveolates? Mol Biol Evol 24:918–928. doi: 10.1093/molbev/msm008 PubMedGoogle Scholar
  85. Spork S, Hiss JA, Mandel K, Sommer M, Kooij TW, Chu T, Schneider G, Maier UG, Przyborski JM (2009) An unusual ERAD-like complex is targeted to the apicoplast of Plasmodium falciparum. Eukaryot Cell 8:1134–1145. doi: 10.1128/EC.00083-09 PubMedGoogle Scholar
  86. Striepen B, Crawford MJ, Shaw MK, Tilney LG, Seeber F, Roos DS (2000) The plastid of Toxoplasma gondii is divided by association with the centrosomes. J Cell Biol 151:1423–1434PubMedGoogle Scholar
  87. Suplick K, Akella R, Saul A, Vaidya AB (1988) Molecular cloning and partial sequence of a 5.8 kilobase pair repetitive DNA from Plasmodium falciparum. Mol Biochem Parasitol 30:289–290PubMedGoogle Scholar
  88. Suplick K, Morrisey J, Vaidya AB (1990) Complex transcription from the extrachromosomal DNA encoding mitochondrial functions of Plasmodium yoelii. Mol Cell Biol 10:6381–6388PubMedGoogle Scholar
  89. Surolia N, Surolia A (2001) Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum. Nat Med 7:167–173PubMedGoogle Scholar
  90. Tonkin CJ, Van Dooren GG, Spurck TP, Struck NS, Good RT, Handman E, Cowman AF, McFadden GI (2004) Localization of organellar proteins in Plasmodium falciparum using a novel set of transfection vectors and a new immunofluorescence fixation method. Mol Biochem Parasitol 137:13–21PubMedGoogle Scholar
  91. Tonkin CJ, Pearce JA, McFadden GI, Cowman AF (2006a) Protein targeting to destinations of the secretory pathway in the malaria parasite Plasmodium falciparum. Curr Opin Microbiol 9:381–387PubMedGoogle Scholar
  92. Tonkin CJ, Roos DS, McFadden GI (2006b) N-terminal positively charged amino acids, but not their exact position, are important for apicoplast transit peptide fidelity in Toxoplasma gondii. Mol Biochem Parasitol 150:192–200PubMedGoogle Scholar
  93. Tonkin CJ, Struck NS, Mullin KA, Stimmler LM, McFadden GI (2006c) Evidence for Golgi-independent transport from the early secretory pathway to the plastid in malaria parasites. Mol Microbiol 61:614–630PubMedGoogle Scholar
  94. Tonkin CJ, Foth BJ, Ralph SA, Struck N, Cowman AF, McFadden GI (2008) Evolution of malaria parasite plastid targeting sequences. Proc Natl Acad Sci USA 105:4781–4785. doi: 10.1073/pnas.0707827105 PubMedGoogle Scholar
  95. Toso MA, Omoto CK (2007) Gregarina niphandrodes may lack both a plastid genome and organelle. J Eukaryot Microbiol 54:66–72. doi: 10.1111/j.1550-7408.2006.00229.x PubMedGoogle Scholar
  96. Vaidya AB, Akella R, Suplick K (1989) Sequences similar to genes for two mitochondrial proteins and portions of ribosomal RNA in tandemly arrayed 6-kilobase-pair DNA of a malarial parasite. Mol Biochem Parasitol 35:97–108PubMedGoogle Scholar
  97. Vaishnava S, Striepen B (2006) The cell biology of secondary endosymbiosis—how parasites build, divide and segregate the apicoplast. Mol Microbiol 61:1380–1387. doi: 10.1111/j.1365-2958.2006.05343.x PubMedGoogle Scholar
  98. van Dooren GG, Su V, D’Ombrain MC, McFadden GI (2002) Processing of an apicoplast leader sequence in Plasmodium falciparum and the identification of a putative leader cleavage enzyme. J Biol Chem 277:23612–23619PubMedGoogle Scholar
  99. van Dooren GG, Stimmler LM, McFadden GI (2006) Metabolic maps and functions of the Plasmodium mitochondrion. FEMS Microbiol Rev 30:596–630PubMedGoogle Scholar
  100. van Dooren GG, Tomova C, Agrawal S, Humbel BM, Striepen B (2008) Toxoplasma gondii Tic20 is essential for apicoplast protein import. Proc Natl Acad Sci USA 105:13574–13579. doi: 10.1073/pnas.0803862105 PubMedGoogle Scholar
  101. van Dooren GG, Reiff SB, Tomova C, Meissner M, Humbel BM, Striepen B (2009) A novel dynamin-related protein has been recruited for apicoplast fission in Toxoplasma gondii. Curr Biol 19:267–276. doi: 10.1016/j.cub.2008.12.048 PubMedGoogle Scholar
  102. Vanderberg JP, Nussenzweig RS, Most H, Orton CG (1968) Protective immunity produced by the injection of x-irradiated sporozoites of Plasmodium berghei. II. Effects of radiation on sporozoites. J Parasitol 54:1175–1180PubMedGoogle Scholar
  103. Vaughan AM, O’Neill MT, Tarun AS, Camargo N, Phuong TM, Aly AS, Cowman AF, Kappe SH (2009) Type II fatty acid synthesis is essential only for malaria parasite late liver stage development. Cell Microbiol 11:506–520. doi: 10.1111/j.1462-5822.2008.01270.x PubMedGoogle Scholar
  104. Vaughan AM, Wang R, Kappe SH (2010) Genetically engineered, attenuated whole-cell vaccine approaches for malaria. Hum Vaccin 6:107–113PubMedGoogle Scholar
  105. Waller RF, Keeling PJ (2006) Alveolate and chlorophycean mitochondrial cox2 genes split twice independently. Gene 383:33–37. doi: 10.1016/j.gene.2006.07.003 PubMedGoogle Scholar
  106. Waller RF, Keeling PJ, Donald RGK, Striepen B, Handman E, Lang-Unnasch N, Cowman AF, Besra GS, Roos DS, McFadden GI (1998) Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc Natl Acad Sci USA 95:12352–12357PubMedGoogle Scholar
  107. Waller RF, Cowman AF, Reed MB, McFadden GI (2000) Protein trafficking to the plastid in Plasmodium falciparum is via the secretory pathway. EMBO J 19:1794–1802PubMedGoogle Scholar
  108. Waller RF, Keeling PJ, van Dooren GG, McFadden GI (2003) Comment on “A green algal apicoplast ancestor”. Science 301:49PubMedGoogle Scholar
  109. Weber AP, Linka M, Bhattacharya D (2006) Single, ancient origin of a plastid metabolite translocator family in Plantae from an endomembrane-derived ancestor. Eukaryot Cell 5:609–612PubMedGoogle Scholar
  110. Wiesner J, Jomaa H (2007) Isoprenoid biosynthesis of the apicoplast as drug target. Curr Drug Targets 8:3–13PubMedGoogle Scholar
  111. Wiesner J, Reichenberg A, Heinrich S, Schlitzer M, Jomaa H (2008) The plastid-like organelle of apicomplexan parasites as drug target. Curr Pharm Des 14:855–871PubMedGoogle Scholar
  112. Williamson DH, Wilson RJM, Bates RA, McCready S, Perler R, Qiang B-U (1985) Nuclear and mitochondrial DNA of the primate parasite Plasmodium knowlesi. Mol Biochem Parasitol 14:199–209PubMedGoogle Scholar
  113. Williamson DH, Gardner MJ, Preiser P, Moore DJ, Rangachari K, Wilson RJ (1994) The evolutionary origin of the 35 kb circular DNA of Plasmodium falciparum: new evidence supports a possible rhodophyte ancestry. Mol Gen Genet 243:249–252PubMedGoogle Scholar
  114. Wilson I (1993) Plastids better red than dead [letter]. Nature 366:6456Google Scholar
  115. Wilson RJM, Gardner MJ, Feagin JE, Williamson DH (1991) Have malaria parasites three genomes? Parasitol Today 7:134–136PubMedGoogle Scholar
  116. Wilson RJM, Denny PW, Preiser PR, Rangachari K, Roberts K, Roy A, Whyte A, Strath M, Moore DJ, Moore PW, Williamson DH (1996) Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J Mol Biol 261:155–172PubMedGoogle Scholar
  117. Xu P, Widmer G, Wang Y, Ozaki LS, Alves JM, Serrano MG, Puiu D, Manque P, Akiyoshi D, Mackey AJ, Pearson WR, Dear PH, Bankier AT, Peterson DL, Abrahamsen MS, Kapur V, Tzipori S, Buck GA (2004) The genome of Cryptosporidium hominis. Nature 431:1107–1112. doi: 10.1038/nature02977 PubMedGoogle Scholar
  118. Yu M, Kumar TR, Nkrumah LJ, Coppi A, Retzlaff S, Li CD, Kelly BJ, Moura PA, Lakshmanan V, Freundlich JS, Valderramos JC, Vilcheze C, Siedner M, Tsai JH, Falkard B, Sidhu AB, Purcell LA, Gratraud P, Kremer L, Waters AP, Schiehser G, Jacobus DP, Janse CJ, Ager A, Jacobs WR Jr, Sacchettini JC, Heussler V, Sinnis P, Fidock DA (2008) The fatty acid biosynthesis enzyme FabI plays a key role in the development of liver-stage malarial parasites. Cell Host Microbe 4:567–578. doi: 10.1016/j.chom.2008.11.001 PubMedGoogle Scholar
  119. Zhu G, Marchewka MJ, Keithly JS (2000) Cryptosporidium parvum appears to lack a plastid genome. Microbiology 146(Pt 2):315–321PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.School of BotanyUniversity of MelbourneMelbourneAustralia

Personalised recommendations