, Volume 248, Issue 2, pp 425–435 | Cite as

Syncytia in plants: cell fusion in endosperm—placental syncytium formation in Utricularia (Lentibulariaceae)

  • Bartosz J. Płachno
  • Piotr Świątek
New Ideas in Cell Biology


The syncytium formed by Utricularia is extremely unusual and perhaps unique among angiosperm syncytia. All typical plant syncytia (articulated laticifers, amoeboid tapetum, the nucellar plasmodium of river weeds) are formed only by fusion of sporophytic cells which possess the same genetic material, unlike Utricularia in which the syncytium possesses nuclei from two different sources: cells of maternal sporophytic nutritive tissue and endosperm haustorium (both maternal and paternal genetic material). How is this kind of syncytium formed and organized and is it similar to other plant syncytial structures? We used light and electron microscopy to reconstruct the step-by-step development of the Utricularia syncytia. The syncytia of Utricularia developed through heterotypic cell fusion involving the digestion of the cell wall, and finally, heterokaryotic multinucleate structures were formed, which possessed different-sized nuclei that were not regularly arranged in the cytoplasm. We showed that these syncytia were characterized by hypertrophy of nuclei, abundant endoplasmic reticulum and organelles, and the occurrence of wall ingrowths. All these characters testify to high activity and may confirm the nutritive and transport functions of the syncytium for the developing embryo. In Utricularia, the formation of the syncytium provides an economical way to redistribute cell components and release nutrients from the digested cell walls, which can now be used for the embryo, and finally to create a large surface for the exchange of nutrients between the placenta and endosperm.


Embryology Cell fusion Endosperm haustoria Syncytium Embryo nutrition 



This study was funded by grant N N304 002536 from the Polish Ministry of Science and Higher Education. The first author gratefully acknowledges the support of an award from the Foundation for Polish Sciences (Start Programme). We thank our colleague Dr. Lubomir Adamec for kindly providing part of the material for this study and for hosting BJP in Třeboň. We particularly thank the reviewers for their very helpful suggestions for making our manuscript clearer.

Conflict of interest



  1. Anger EM, Weber M (2006) Pollen-wall formation in Arum alpinum. Ann Bot (Lond) 97:239–244CrossRefGoogle Scholar
  2. Arekal GD, Nagendran CR (1975a) Is there a Podostemum type of embryo sac in the genus Farmeria? Caryologia 28:229–235Google Scholar
  3. Arekal GD, Nagendran CR (1975b) Embryo sac of Hydrobryopsis sessilis (Podostemaceae)—origin, organization and significance. Bot Not 128:332–337Google Scholar
  4. Baluška F, Volkmann D, Barlow PW (2004) Eukaryotic cells and their cell bodies: Cell Theory revised. Ann Bot (Lond) 94:9–32CrossRefGoogle Scholar
  5. Battaglia E (1987) Embryological questions: 11. Has the debated case of Podostemaceae been resolved? Ann Bot (Roma) 45:37–64Google Scholar
  6. Brown RC, Lemmon BE (2001) The cytoskeleton and spatial control of cytokinesis in the plant life cycle. Protoplasma 215:35–49PubMedCrossRefGoogle Scholar
  7. Brown RC, Lemmon BE, Nguyen H (2004) Comparative anatomy of the chalazal endosperm cyst in seeds of the Brassicaceae. Bot J Linn Soc 144:375–394CrossRefGoogle Scholar
  8. Esau K (1965) Plant Anatomy. Wiley, LondonGoogle Scholar
  9. Farooq M (1964) Studies in the Lentibulariaceae I. The embryology of Utricularia stellaris L. var. inflexa Clarke. Part II. Microsporangium, male gametophyte, fertilization, endosperm, embryo, and seed. Proc Natl Inst Sci India 30:280–299Google Scholar
  10. Gabara B (2001) Jądro. In: Woźny A, Michejda J, Ratajczak L (eds) Podstawy biologii komórki roślinnej. Uniwersytet im Adama Mickiewicza w Poznaniu, Poznań, pp 158–226Google Scholar
  11. Ghogue J-P, Ameka GK, Grob V, Huber KA, Pfeifer E, Rutishauser R (2009) Enigmatic morphology of Djinga felicis (Podostemaceae–Podostemoideae), a badly known endemic from northwestern Cameroon. Bot J Linn Soc 160:64–81CrossRefGoogle Scholar
  12. Golinowski W, Magnusson C (1991) Tissue response induced by Heterodera schachtii (Nematoda) in susceptible and resistant white mustard cultivars. Can J Bot 69:53–62Google Scholar
  13. Golinowski W, Grundler FMW, Sobczak M (1996) Changes in the structure of Arabidopsis thaliana during female development of the plant-parasitic nematode Heterodera schachtii. Protoplasma 194:103–116CrossRefGoogle Scholar
  14. Goverse A, Overmars H, Engelbertink J, Schots A, Bakier J, Helder J (2000) Both induction and morphogenesis of cyst nematode feeding cells are mediated by auxin. MPMI 13:1121–1129PubMedCrossRefGoogle Scholar
  15. Grundler MW, Sobczak M, Golinowski W (1998) Formation of wall openings in root cells of Arabidopsis thaliana following infection by the plant-parasitic nematode Heterodera schachtii. Eur J Plant Pathol 104:545–551CrossRefGoogle Scholar
  16. Gunning BES, Pate JS (1969) “Transfer cells” plant cells with wall ingrowths, specialized in relation to short distance transport of solutes—their occurrence, structure, and development. Protoplasma 68:107–133CrossRefGoogle Scholar
  17. Gunning BES, Pate JS (1974) Transfer cells. In: Robards AW (ed) Dynamic aspects of plant ultrastructure. McGraw-Hill, London, pp 441–480Google Scholar
  18. Holtmann B, Kleine M, Grundler FMW (2000) Ultrastructure and anatomy of nematode-induced syncytia in roots of susceptible and resistant sugar beet. Protoplasma 211:39–50CrossRefGoogle Scholar
  19. Jäger-Zürn I (1997) Embryological and floral studies in Weddellina squamulosa Tul. (Podostemaceae, Tristichoideae). Aquat Bot 57:151–182CrossRefGoogle Scholar
  20. Jankun A, Płachno B (2000) Embryology of Utricularia vulgaris L. Acta Biol Cracov Bot 42/1: 23. Abstracts of the XXIV Conference on Embryology Plants, Animals, Humans May 24–26, 2000, Podlesice, PolandGoogle Scholar
  21. Jobson RW, Albert VA (2002) Molecular rates parallel diversification contrasts between carnivorous plant sister lineages. Cladistics 18:127–136Google Scholar
  22. Jobson RW, Playford J, Cameron KM, Albert VA (2003) Molecular phylogenetics of Lentibulariaceae inferred from plastid rps16 intron and trnL-F DNA sequences: implications for character evolution and biogeography. Syst Bot 28:157–171Google Scholar
  23. Kausik SD (1938) Pollen development and seed formation in Utricularia caerulea. Beih Bot Zbl 58A:365–378Google Scholar
  24. Kausik SB, Raju MVS (1955) A contribution to the floral morphology and embryology of Utricularia retriculata. Proc Indian Acad Sci 41:155–166Google Scholar
  25. Khan R (1954) A contribution to the embryology of Utricularia flexuosa Vahl. Phytomorphol 4:80–117Google Scholar
  26. Kirchoff BK, Pfeifer E, Rutishauser R (2008) Plant structure ontology: how should we label plant structures with doubtful or mixed identities? Zootaxa 1950:103–122Google Scholar
  27. Magnusson C, Golinowski W (1991) Ultrastructural relationships of the developing syncytium induced by Heterodera schachtii (Nematoda) in root tissues of rape. Can J Bot 69:44–52Google Scholar
  28. Maheshwari P (1950) An introduction to the embryology of angiosperms. New York, McGraw-HillGoogle Scholar
  29. Merz M (1897) Untersuchungen über die Samenentwicklung der Utricularien. Flora 84:69–87Google Scholar
  30. Mepham R, Lane G (1969) Formation and development of the tapetal periplasmodium in Tradescantia bracteata. Protoplasma 68:175–192CrossRefGoogle Scholar
  31. Mukkada AJ (1962) Some observations on the embryology of Dicraeea stylosa Wight. In: Plant embryology—a symposium. CSIR, New Delhi, pp 139–145Google Scholar
  32. Müller K, Borsch T, Legendre L, Porembski S, Theisen I, Barthlott W (2004) Evolution of carnivory in Lentibulariaceae and the Lamiales. Plant Biol 6:477–490PubMedCrossRefGoogle Scholar
  33. Müller K, Borsch T (2005) Phylogenetics of Utricularia (Lentibulariaceae) and molecular evolution of the trnK intron in a lineage with high substitutional rates. Plant Syst Evol 250:39–67. doi: 10.1007/s00606-004-0224-1 CrossRefGoogle Scholar
  34. Müller K, Borsch T, Legendre L, Porembski S, Theisen I, Barthlott W (2006) Recent progress in understanding the evolution of carnivorous Lentibulariaceae (Lamiales). Plant Biol 6:477–490. doi: 10.1055/s-2004-817909 CrossRefGoogle Scholar
  35. Murguía-Sánchez G, Alejandro Novelo R, Thomas Philbrick C, Márquez Guzmán GJ (2002) Embryo sac development in Vanroyenella plumosa, Podostemaceae. Aquat Bot 73:201–210CrossRefGoogle Scholar
  36. Nagendran CR, Arekal GD, Subramanyan K (1977) Embryo sac studies in three species of Polypleurum (Podostemaceae). Plant Syst Evol 128:215–226CrossRefGoogle Scholar
  37. Nagl W (1992) The polytenic endosperm haustorium of Rhinanthus minor (Scrophulariaceae) functional ultrastructure. Can J Bot 70:1997–2004CrossRefGoogle Scholar
  38. Nguyen H, Brown RC, Lemmon BE (2002) Cytoskeletal organization of the micropylar endosperm in Coronopus didymus L. (Brassicaceae). Protoplasma 219:210–220PubMedCrossRefGoogle Scholar
  39. Offler CE, McCurdy DW, Patrick JW, Talbot MJ (2003) Transfer cells: cells specialized for a special purpose. Annu Rev Plant Biol 54:431–454PubMedCrossRefGoogle Scholar
  40. Pacini E, Juniper BE (1983) The ultrastructure of the formation and development of the amoeboid tapetum in Arum italicum Miller. Protoplasma 117:116–129CrossRefGoogle Scholar
  41. Pastey MK, Gower TL, Spearman PW, Crowe JE Jr, Graham BS (2000) A RhoA-derived peptide inhibits syncytium formation induced by respiratory syncytial virus and parainfluenza virus type 3. Nat Med 6:35–40PubMedCrossRefGoogle Scholar
  42. Płachno BJ, Świątek P (2008) Cytoarchitecture of Utricularia nutritive tissue. Protoplasma 234:25–32PubMedCrossRefGoogle Scholar
  43. Płachno BJ, Świątek P (2010) Unusual embryo structure in viviparous Utricularia nelumbifolia, with remarks on embryo evolution in genus Utricularia. Protoplasma 239:69–80PubMedCrossRefGoogle Scholar
  44. Rutishauser R, Novelo RA, Philbrick CT (1999) Developmental morphology of New World Podostemaceae: Marathrum and Vanroyenella. Int J Plant Sci 160:29–45CrossRefGoogle Scholar
  45. Rutishauser R, Moline P (2005) Evo-devo and the search for homology (“sameness”) in biological systems. Theory Biosci 124:213–241PubMedGoogle Scholar
  46. Shemer G, Podbilewicz B (2000) Fusomorphogenesis: cell fusion in organ formation. Dev Dyn 218:30–51PubMedCrossRefGoogle Scholar
  47. Sobczak M, Golinowski W (2009) Structure of cyst nematode feeding sites. In: Berg RH, Taylor CG (ed) Cell Biology of Plant Nematode Parasitism. Plant Cell Monographs 15Google Scholar
  48. Sobczak M, Grymaszewska G, Kurek W, Golinowski W (1995) Biotechnologiczne metody wprowadzania odporności u roślin na nicienie. Kosmos 44:719–735Google Scholar
  49. Sobczak M, Golinowski W, Grundler FMW (1997) Changes in the structure of Arabidopsis thaliana roots induced during development of males of the plant parasitic nematode Heterodera schachtii. Eur J Plant Pathol 103:113–124CrossRefGoogle Scholar
  50. Swamy BGL, Ganapathy PM (1957) A new type of endosperm haustorium in Nothapodytes foetida. Phytomorphol 7:331–336Google Scholar
  51. Taylor P (1989) The genus Utricularia—a taxonomic monograph. Kew B 14:1–735Google Scholar
  52. Tiwari SC, Gunning BES (1986) Colchicine inhibits plasmodium formation and disrupts pathways of sporopollenin secretion in the anther tapetum of Tradescantia virginiana L. Protoplasma 133:115–128CrossRefGoogle Scholar
  53. Vijayaraghavan MR, Prabhakar K (1984) The Endosperm. In: Johri BM (ed) Embryology of Angiosperms. Springer-Verlag, Berlin, pp 319–376Google Scholar
  54. Weng J, Krementsov DN, Khurana S, Roy NH, Thali M (2009) Formation of syncytia is repressed by tetraspanins in human immunodeficiency virus type 1-producing cells. J Virol 83:7467–7474PubMedCrossRefGoogle Scholar
  55. Wylie R, Yocom AE (1923) The endosperm of Utricularia. U Iowa Stud Nat History 10(3–18):32Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Plant Cytology and EmbryologyJagiellonian UniversityCracowPoland
  2. 2.Department of Animal Histology and EmbryologyUniversity of SilesiaKatowicePoland

Personalised recommendations