Advertisement

Protoplasma

, Volume 243, Issue 1–4, pp 73–86 | Cite as

Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation

  • Daniel RemiasEmail author
  • Ulf Karsten
  • Cornelius Lütz
  • Thomas Leya
Original Article

Abstract

Amongst a specialised group of psychrophilic microalgae that have adapted to thrive exclusively in summer snow fields, Chloromonas nivalis has been reported as a species causing green, orange or pink blooms in many alpine and polar regions worldwide. Nevertheless, the cytology, ecophysiology and taxonomy of this species are still unresolved. Intracellular processes during cyst formation, which is the dominant stage on snow fields, were examined with samples from the European Alps to better understand the cellular strategies of a green alga living in this harsh habitat. We show with two different methods, i.e. oxygen optode fluorometry and by chlorophyll fluorescence, that the cysts are photosynthetically highly active, although they do not divide, and that Chloromonas nivalis can cope with low as well as high light conditions. During cyst formation, the chloroplast is fragmented into several smaller parts, enlarging the surface to volume ratio. The pool of xanthophyll-cycle pigments is significantly enlarged, which is different from other snow algae. The cytoplasm is filled with lipid bodies containing astaxanthin, a secondary carotenoid that causes the typical orange colour. The cyst wall surface possesses characteristic elongate flanges, which are assembled extracellulary by accumulation of material in the periplasmatic interspace. Comparison of Chloromonas nivalis samples from different locations (Austrian Alps, Spitsbergen) by molecular methods indicates genetic variations due to spatial isolation, while a North American strain has no close relationship to the taxon.

Keywords

Algal photosynthesis Astaxanthin Cyst ultrastructure Taxonomy UV protection 

Abbreviations

LM

light microscopy

MAA

mycosporin-like amino acid

SEM

scanning electron microscopy

TEM

transmission electron microscopy

VAZ

violaxanthin, antheraxanthin and zeaxanthin

Notes

Acknowledgements

We thank the Institute of Ecology, University of Innsbruck, for admittance to their Limnological Field Station at Lake Gossenkölle (Tyrol) and the Austrian Science Fund FWF (Project 200810 to C. L.) for support. U. K. thanks the Deutsche Forschungsgemeinschaft (KA 899/16-1) for a grant which supported his sabbatical at the University of Innsbruck. T. L. also is indebted to the Deutsche Forschungsgemeinschaft for funding his snow algal research (LE 1275/2-2). Furthermore, we thank Hans Wastian and Siegfried Aigner for assistance in the field, Werner Kofler for the SEM image generation, Belina DeCarli for TEM sectioning and image creation, Thomas Pröschold for providing the gene sequence of strain CCCryo 154-01 as well as Christian Wiencke (AWI Bremerhaven) for lending the PAM.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

709_2010_123_MOESM1_ESM.doc (74 kb)
ESM Table 1 List of algal strains used in this study, either from CCCryo or from field samples. Cd Dunaliella tertiolecta Chlamydomonas, Cr Chloromonas, nd not determined, na not available, question mark clade association unclear (DOC 73 kb)

References

  1. Bidigare RR, Ondrusek ME, Kennicutt MC II, Iturriaga R, Harvey HR, Hoham RW, Macko SA (1993) Evidence for a photoprotective function for secondary carotenoids of snow algae. J Phycol 29:427–434CrossRefGoogle Scholar
  2. Bischoff Y (2008) Diversité et mobilité des algues de neige dans les Alpes suisses. Dissertation, University of Geneva, p. 132Google Scholar
  3. Brown RM, Johnson SC, Bold HC (1968) Electron and phase-contrast microscopy of sexual reproduction in Chlamydomonas moewusii. J Phycol 4:100–120CrossRefGoogle Scholar
  4. Buchner O, Lütz C, Holzinger A (2007) Design and construction of a new temperature controlled chamber for light- and confocal microscopy under monitored conditions: biological application for plant samples. J Microsc 225:183–191CrossRefPubMedGoogle Scholar
  5. Cavalier-Smith T (1976) Electron microscopy of zygospore formation in Chlamydomonas reinhardii. Protoplasma 87:297–315CrossRefPubMedGoogle Scholar
  6. Duval B, Shetty K, Thomas WH (2000) Phenolic compounds and antioxidant properties in the snow alga Chlamydomonas nivalis after exposure to light. J Appl Phycol 11:559–566Google Scholar
  7. Ettl H (1968) Ein beitrag zur kenntnis der algenflora tirols. Ber nat-med Ver Innsbruck 56:177–354Google Scholar
  8. Ettl H (1983) Chlorophyta I. Phytomonadina. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa, vol. 9. Gustav Fischer, Stuttgart, p 807Google Scholar
  9. Gorton HL, William WE, Vogelmann TC (2001) The light environment and cellular optics of the snow alga Chlamydomonas nivalis (Bauer) Wille. Photochem Photobiol 73:611–620CrossRefPubMedGoogle Scholar
  10. Hagen C, Siegmund S, Braune W (2002) Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. Eur J Phycol 37:217–226CrossRefGoogle Scholar
  11. Hanagata N (1998) Phylogeny of the subfamily Scotiellocystoideae (Chlorophyceae, Chlorophyta) and related taxa inferred from 18 s ribosomal rna gene sequence data. J Phycol 34:1049–1054CrossRefGoogle Scholar
  12. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580CrossRefPubMedGoogle Scholar
  13. Hancke TB, Hancke K, Johnsen G, Sakshaug E (2008) Rate of O2 production derived from pulse-amplitude-modulated fluorescence: testing three biooptical approaches against measured O2 production rate. J Phycol 44:803–813CrossRefGoogle Scholar
  14. Harris EH (2009) The Chlamydomonas sourcebook. Volume 1: introduction to Chlamydomonas and its laboratory use, 2nd edn. Academic Press, Oxford, p 444Google Scholar
  15. Henley WJ (1993) Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J Phycol 29:729–739CrossRefGoogle Scholar
  16. Hepler PK, Newcomb EH (1964) Microtubules and fibrils in the cytoplasm of Coleus cells undergoing secondary wall deposition. J Cell Biol 20:529–533CrossRefPubMedGoogle Scholar
  17. Hoham RW, Blinn DW (1979) Distribution of cryophilic algae in an arid region, the American Southwest. Phycologia 18:133–145Google Scholar
  18. Hoham RW, Mullet JE (1977) The life history and ecology of the snow alga Chloromonas cryophila sp. nov. (Chlorophyta, Volvocales). Phycologia 16:53–68Google Scholar
  19. Hoham RW, Mullet JE (1978) Chloromonas nivalis (Chod.) Hoh. & Mull. Comb. Nov., and additional comments on the snow alga, Scotiella. Phycologia 17:106–107Google Scholar
  20. Hoham RW, Duval B (2001) Microbial ecology of snow and freshwater ice with emphasis on snow algae. In: Jones et al (eds) Snow ecology. Cambridge University Press, New York, pp 168–228Google Scholar
  21. Hoham RW, Roemer SC, Mullet JE (1979) The life history and ecology of the snow alga Chloromonas brevispina comb. nov. (Chlorophyta, Volvocales). Phycologia 18:55–70Google Scholar
  22. Hoham RW, Bonome TA, Martin CW, Leebens-Mack JH (2002) A combined 18S rDNA and rbcL phylogenetic analysis of Chloromonas and Chlamydomonas (Chlorophyceae, Volvocales) emphasizing snow and other cold-temperate habitats. J Phycol 38:1051–1064CrossRefGoogle Scholar
  23. Hoham RW, Berman JD, Rogers HS, Felio JH, Ryba JB, Miller PR (2006) Two new species of green snow algae from Upstate New York, Chloromonas chenangoensis sp. nov. and Chloromonas tughillensis sp. nov. (Volvocales, Chlorophyceae) and the effects of light on their life cycle development. Phycologia 45:319–330CrossRefGoogle Scholar
  24. Holzinger A, Lütz C (2006) Algae and UV irradiation: effects on ultrastructure and related metabolic functions. Micron 37:190–207CrossRefPubMedGoogle Scholar
  25. Karsten U, Friedl T, Schumann R, Hoyer K, Lembcke S (2005) Mycosporine like amino acids (MAAs) and phylogenies in green algae: Prasiola and its relatives from the Trebouxiophyceae (Chlorophyta). J Phycol 41:557–566CrossRefGoogle Scholar
  26. Karsten U, Escoubeyrou K, Charles F (2009) The effect of redissolution solvents and HPLC columns on the analysis of mycosporine-like amino acids (MAAs) in the macroalgal species Prasiola crispa and Porphyra umbilicalis. Helgol Mar Res 63:231–238CrossRefGoogle Scholar
  27. Kol E (1968) Kryobiologie. Biologie und Limnologie des Schnees und Eises. I. Kryovegetation. In: Elster HJ, Ohle W (eds) Die Binnengewässer, Band XXIV. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, p 216Google Scholar
  28. Kol E (1970) Vom roten Schnee der Tiroler Alpen. Ann Hist-Nat Mus Natl Hung 62:129–136Google Scholar
  29. Komárek J, Nedbalová L (2007) Green cryosestic algae. In: Seckbach J (ed) Cellular origin, life in extreme habitats and astrobiology (volume 11): algae and cyanobacteria in extreme environments, part 4: phototrophs in cold environments. Springer, Dordrecht, pp 323–344Google Scholar
  30. Kromkap JC, Forster RM (2003) The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminology. Eur J Phycol 38:103–112CrossRefGoogle Scholar
  31. Kvíderova J, Stibal M, Nedbalová L, Kaštovská K (2005) The first record of snow algae vitality in situ by variable fluorescence of chlorophyll. Fottea 5:69–77Google Scholar
  32. Leslie GA (2009) Natural products in plants: chemical diversity. In: Begley TP (ed) Wiley Encyclopedia of Chemical Biology, vol. 3. Willey, Hoboken, N.J., pp 261–277Google Scholar
  33. Leya T (2004) Feldstudien und genetische Untersuchungen zur Kryophilie der Schneealgen Nordwestspitzbergens. Dissertation. Shaker, Aachen, p 145Google Scholar
  34. Leya T, Rahn A, Lütz C, Remias D (2009) Response of arctic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology. FEMS Microbiol Ecol 67:432–443CrossRefPubMedGoogle Scholar
  35. Li HB, Cheng KW, Wong CC, Fan KW, Chen F, Jiang Y (2007) Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem 102:771–776CrossRefGoogle Scholar
  36. Liaaen-Jensen S, Lutnæs BJ (2008) E/Z isomers and isomerization. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, volume 4: natural functions. Birkhäuser, Basel, pp 15–36CrossRefGoogle Scholar
  37. Ling HU, Seppelt RD (1998) Snow algae of the Windmill Islands, continental Antarctica. 3. Choloromonas polyptera (Volvocales, Chlorophyta). Polar Biol 20:320–324CrossRefGoogle Scholar
  38. Lukavský J (1993) First record of cryoseston in the Bohemian Forest Mts. (Šumava). Algological Stud 69:83–89Google Scholar
  39. Lukavský J, Furnadzhieva S, Nedbalová L (2009) First record of cryoseston in the Vitosha Mountains (Bulgaria). Nova Hedwigia 88:97–109CrossRefGoogle Scholar
  40. Marshall WA, Chalmers MO (1997) Airborne dispersal of Antarctic terrestrial algae and cyanobacteria. Ecography 20:585–594CrossRefGoogle Scholar
  41. Masojidek J, Kopecký J, Kobližek M, Torzillo G (2004) The xanthophyll cycle in green algae (Chlorophyta): its role in the photosynthetic apparatus. Plant Biology 6:342–349Google Scholar
  42. Müller T, Bleiß W, Martin CD, Rogaschewski S, Fuhr G (1998) Snow algae from northwest Svalbard: their identification, distribution, pigment and nutrient content. Polar Biol 20:14–32CrossRefGoogle Scholar
  43. Muramoto K, Kato S, Shitara T, Hara Y, Nozaki H (2008) Morphological and genetic variation in the cosmopolitan snow alga Chloromonas nivalis (Volvocales, Chlorophyta) from Japanese mountainous area. Cytologia 73:91–96CrossRefGoogle Scholar
  44. Nedbalová L, Kociánová M, Lukavský J (2008) Ecology of snow algae in the Giant Mts. Opera Corcon 45:59–68Google Scholar
  45. Novis PM, Hoham RW, Beer T, Dawson M (2008) Two snow species of the quadriflagellate green alga Chlainomonas (Chlorophyta, Volvocales): ultrastructure and phylogenetic position within the Chloromonas clade. J Phycol 44:1001–1012CrossRefGoogle Scholar
  46. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefPubMedGoogle Scholar
  47. Pröschold T, Marin B, Schlösser UG, Melkonian M (2001) Molecular phylogeny and taxonomic revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and description of Oogamochlamys gen. nov. and Lobochlamys gen. nov. Protist 152:265–300CrossRefPubMedGoogle Scholar
  48. Remias D, Lütz-Meindl U, Lütz C (2005) Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur J Phycol 40:259–268Google Scholar
  49. Remias D, Lütz C (2007) Characterisation of esterified secondary carotenoids and of their isomers in green algae: a HPLC approach. Algological Stud 124:85–94CrossRefGoogle Scholar
  50. Remias D, Holzinger A, Lütz C (2009) Physiology, ultrastructure and habitat of the ice alga Mesotaenium berggrenii (Zygnemaphyceae, Chlorophyta) from glaciers in the European Alps. Phycologia 48:302–312CrossRefGoogle Scholar
  51. Řezanka T, Nedbalová L, Sigler K, Cepák V (2008) Identification of astaxanthin diglucoside diesters from snow alga Chlamydomonas nivalis by liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. Phytochemistry 69:479–490CrossRefPubMedGoogle Scholar
  52. Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and nonphotochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62CrossRefGoogle Scholar
  53. Stibal M (2003) Ecological and physiological characteristics of snow algae from Czech and Slovak mountains. Fottea (Czech Phycology) 3:141–152Google Scholar
  54. Stibal M, Elster J, Šabacká M, Kaštovská K (2007) Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry. FEMS Microbiol Ecol 59:265–273CrossRefPubMedGoogle Scholar
  55. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526Google Scholar
  56. Tschaikner A, Ingolić E, Stoyneva MP, Gärtner G (2007) Autosporulation in the soil alga Coelastrella terrestris (Chlorophyta, Scenedesmaceae, Scenedesmoideae). Phytol Balc 13:29–34Google Scholar
  57. Webb WL, Newton M, Starr D (1974) Carbon dioxide exchange of Alnus rubra: a mathematical model. Oecol 17:281–291CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Daniel Remias
    • 1
    Email author
  • Ulf Karsten
    • 2
  • Cornelius Lütz
    • 1
  • Thomas Leya
    • 3
  1. 1.Institute of BotanyUniversity of InnsbruckInnsbruckAustria
  2. 2.Institute of Biological Sciences-Applied EcologyUniversity of RostockRostockGermany
  3. 3.Fraunhofer-IBMTPotsdam-GolmGermany

Personalised recommendations