Advertisement

Protoplasma

, Volume 244, Issue 1–4, pp 3–14 | Cite as

How the green alga Chlamydomonas reinhardtii keeps time

  • Thomas Schulze
  • Katja Prager
  • Hannes Dathe
  • Juliane Kelm
  • Peter Kießling
  • Maria Mittag
Review Article

Abstract

The unicellular green alga Chlamydomonas reinhardtii has two flagella and a primitive visual system, the eyespot apparatus, which allows the cell to phototax. About 40 years ago, it was shown that the circadian clock controls its phototactic movement. Since then, several circadian rhythms such as chemotaxis, cell division, UV sensitivity, adherence to glass, or starch metabolism have been characterized. The availability of its entire genome sequence along with homology studies and the analysis of several sub-proteomes render C. reinhardtii as an excellent eukaryotic model organism to study its circadian clock at different levels of organization. Previous studies point to several potential photoreceptors that may be involved in forwarding light information to entrain its clock. However, experimental data are still missing toward this end. In the past years, several components have been functionally characterized that are likely to be part of the oscillatory machinery of C. reinhardtii since alterations in their expression levels or insertional mutagenesis of the genes resulted in defects in phase, period, or amplitude of at least two independent measured rhythms. These include several RHYTHM OF CHLOROPLAST (ROC) proteins, a CONSTANS protein (CrCO) that is involved in parallel in photoperiodic control, as well as the two subunits of the circadian RNA-binding protein CHLAMY1. The latter is also tightly connected to circadian output processes. Several candidates including a significant number of ROCs, CrCO, and CASEIN KINASE1 whose alterations of expression affect the circadian clock have in parallel severe effects on the release of daughter cells, flagellar formation, and/or movement, indicating that these processes are interconnected in C. reinhardtii. The challenging task for the future will be to get insights into the clock network and to find out how the clock-related factors are functionally connected. In this respect, system biology approaches will certainly contribute in the future to improve our understanding of the C. reinhardtii clock machinery.

Keywords

CASEIN KINASE1 Chlamydomonas reinhardtii CHLAMY1 Circadian clock CONSTANS Eyespot Photoperiod Photoreceptors RHYTHM OF CHLOROPLAST (ROC) proteins 

Abbreviations

arg7

Encoding ASL

ASL

ARGININO SUCCINATE LYASE

BP

BINDING PROTEIN

C (1, 3)

C (1, 3) subunit of CHLAMY1

CAB

CHLOROPHYLL a/b BINDING PROTEIN

CCA1

CIRCADIAN CLOCK-ASSOCIATED 1

CCT

CO-COL-TOC1

CDKB1

CYCLIN-DEPENDENT KINASE B1

CO

CONSTANS

COL

CONSTANS-like

ChR (1, 2)

CHANNELRHODOPSIN-(1, 2)

CK (1, 2)

CASEIN KINASE (1, 2)

CrCO

CONSTANS of C. reinhardtii

CRY (a, p)

CRYPTOCHROME (animal-like, plant-like)

CT

Circadian time

CYCA1

CYCLIN A1

DREB1A

Dehydration response element binding1A

EST

Expressed sequence tag

FMRP

FRAGILE X MENTAL RETARDATION PROTEIN

FRQ

FREQUENCY

GBSSI

GRANULE-BOUND STARCH SYNTHASE

GRP (7, 8)

GLYCINE-RICH RNA-BINDING PROTEIN

GS2

GLUTAMINE SYNTHETASE 2

HBP

HEME-BINDING PROTEIN

LD

Long day

LHY

LATE ELONGATED HYPOCOTYL

NII1

NITRITE REDUCTASE 1

NPAS2

NEURONAL PAS DOMAIN PROTEIN 2

Ox

Overexpressing

PAS

PER-ARNT-SIM

PER

PERIOD

PHOT

PHOTOTROPIN

PHY

PHYTOCHROME

PP (1, 2A)

PROTEIN PHOSPHATASE (1, 2A)

RNAi

RNA interference

ROC

RHYTHM OF CHLOROPLAST

RRM

RNA recognition motif

SD

Short day

SOUL3

SOUL-HEME-BINDING-PROTEIN3

TIM

TIMELESS

TOC1

TIMING OF CAB EXPRESSION1

Notes

Acknowledgments

We thank Georg Kreimer, Takuya Matsuo, Stefanie Seitz, Federico Valverde, and Olga Voytsekh for helpful comments on the manuscript. Our work was supported by the Deutsche Forschungsgemeinschaft (grant no. Mi 373 to MM) and the BMBF (Project GoFORSYS, grant no. 0315260A, work package 1 to MM). TS has a fellowship in the Jena School for Microbial Communication that is supported by DFG.

References

  1. Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274. doi: 10.1007/s00299-006-0204-8 CrossRefPubMedGoogle Scholar
  2. Barreau C, Paillard L, Méreau A, Osborne HB (2006) Mammalian CELF/Bruno-like RNA-binding proteins: molecular characteristics and biological functions. Biochimie 88:515–525. doi: 10.1016/j.biochi.2005.10.011 CrossRefPubMedGoogle Scholar
  3. Boesger J, Wagner V, Weisheit W, Mittag M (2009) Analysis of flagellar phosphoproteins from Chlamydomonas reinhardtii. Eukaryot Cell 8:922–932. doi: 10.1128/EC.00067-09 CrossRefPubMedGoogle Scholar
  4. Breton G, Kay SA (2006) Circadian rhythms lit up in Chlamydomonas. Genome Biol 7:215. doi: 10.1186/gb-2006-7-4-215 CrossRefPubMedGoogle Scholar
  5. Bruce VG (1970) The biological clock in Chlamydomonas reinhardtii. J Protozool 17:328–334Google Scholar
  6. Bruce VG (1972) Mutants of the biological clock in Chlamydomonas reinhardtii. Genetics 70:537–548PubMedGoogle Scholar
  7. Bruce VG (1974) Recombinants between clock mutants of Chlamydomonas reinhardtii. Genetics 77:221–230PubMedGoogle Scholar
  8. Byrne TE, Wells MR, Johnson CH (1992) Circadian rhythms of chemotaxis to ammonium and methylammonium uptake in Chlamydomonas. Plant Physiol 98:879–886CrossRefPubMedGoogle Scholar
  9. Corellou F, Schwartz C, Motta J-P, Djouani-Tahri EB, Samchez F, Bouget F-Y (2009) Clocks in the green lineage: comparative functional analysis of the circadian architecture of the picoeukaryote Ostreococcus. Plant Cell 21:3436–3449. doi: 10.1105/tpc.109.068825 CrossRefPubMedGoogle Scholar
  10. DeBruyne JP, Weaver DR, Reppert SM (2007) Peripheral circadian oscillators require CLOCK. Curr Biol 17:R538–9. doi: 10.1016/j.cub.2007.05.067 CrossRefPubMedGoogle Scholar
  11. Fernandez E, Galvan A (2008) Nitrate assimilation in Chlamydomonas. Eukaryot Cell 4:555–559. doi: 10.1128/EC.00431-07 CrossRefGoogle Scholar
  12. Garbarino-Pico E, Green CB (2007) Posttranscriptional regulation of mammalian circadian clock output. Cold Spring Harb Symp Quant Biol 72:145–156. doi: 10.1101/sqb.2007.72.022 CrossRefPubMedGoogle Scholar
  13. Goldman BD (2001) Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement. J Biol Rhythms 16:283–301. doi: 10.1177/074873001129001980 CrossRefPubMedGoogle Scholar
  14. Goodwin BC (1965) Oscillatory behavior in enzymatic control processes. Adv Enzyme Regul 3:425–438CrossRefPubMedGoogle Scholar
  15. Goto K, Johnson CH (1995) Is the cell division cycle gated by a circadian clock? The case of Chlamydomonas reinhardtii. J Cell Biol 129:1061–1069CrossRefPubMedGoogle Scholar
  16. Grossman AR, Harris EE, Hauser C, Lefebvre PA, Martinez D, Rokhsar D, Shrager J, Silflow CD, Stern D, Vallon O, Zhang Z (2003) Chlamydomonas reinhardtii at the crossroads of genomics. Eukaryot Cell 2:1137–1150. doi: 10.1128/EC.2.6.1137-1150.2003 CrossRefPubMedGoogle Scholar
  17. Hanai S, Hamasaka Y, Ishida N (2008) Circadian entrainment to red light in Drosophila: requirement of Rhodopsin 1 and Rhodopsin 6. Neuroreport 19:1441–1444. doi: 10.1097/WNR.0b013e32830e4961 CrossRefPubMedGoogle Scholar
  18. Harmer SL (2009) The circadian system in higher plants. Annu Rev Plant Biol 60:357–377. doi: 10.1146/annurev.arplant.043008.092054 CrossRefPubMedGoogle Scholar
  19. Harris EH (2001) Chlamydomonas as a model organism. Annu Rev Plant Physiol Plant Mol Biol 52:363–406. doi: 10.1146/annurev.arplant.52.1.363 CrossRefPubMedGoogle Scholar
  20. Hegemann P (2008) Algal sensory photoreceptors. Annu Rev Plant Biol 59:167–189. doi: 10.1146/annurev.arplant.59.032607.092847 CrossRefPubMedGoogle Scholar
  21. Heitzer M, Eckert A, Fuhrmann M, Griesbeck C (2007) Influence of codon bias on the expression of foreign genes in microalgae. Adv Exp Med Biol 616:46–53. doi: 10.1007/978-0-387-75532-8_5 CrossRefPubMedGoogle Scholar
  22. Huang K, Beck CF (2003) Phototropin is the blue-light receptor that controls multiple steps in the sexual life cycle of the green alga Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 100:6269–6274. doi: 10.1073/pnas.0931459100 CrossRefPubMedGoogle Scholar
  23. Hubbard KE, Robertson FC, Dalchau N, Webb AA (2010) Systems analyses of circadian networks. Mol Biosyst. doi:  10.1039/b907714f
  24. Hwang S, Kawazoe R, Herrin DL (1996) Transcription of tufA and other chloroplast-encoded genes is controlled by a circadian clock in Chlamydomonas. Proc Natl Acad Sci 93:996–1000CrossRefPubMedGoogle Scholar
  25. Iliev D, Voytsekh O, Schmidt EM, Fiedler M, Nykytenko A, Mittag M (2006a) A heteromeric RNA-binding protein is involved in maintaining acrophase and period of the circadian clock. Plant Physiol 142:797–806. doi: 10.1104/pp. 106.085944 CrossRefPubMedGoogle Scholar
  26. Iliev D, Voytsekh O, Mittag M (2006b) The circadian system of Chlamydomonas reinhardtii. Biol Rhythms Res 37:323–333CrossRefGoogle Scholar
  27. Immeln D, Schlesinger R, Heberle J, Kottke T (2007) Blue light induces radical formation and autophosphorylation in the light-sensitive domain of Chlamydomonas cryptochrome. J Biol Chem 282:21720–21728. doi: 10.1074/jbc.M700849200 CrossRefPubMedGoogle Scholar
  28. Jacobshagen S, Kessler B, Rinehart CA (2008) At least four distinct circadian regulatory mechanisms are required for all phases of rhythms in mRNA amount. J Biol Rhythms 23:511–524. doi: 10.1177/0748730408325753 CrossRefPubMedGoogle Scholar
  29. Johnson CH, Kondo T, Hastings JW (1991) Action spectrum for resetting the circadian phototaxis rhythm in the CW15 strain of Chlamydomonas. II. Illuminated cells. Plant Physiol 97:1122–1129CrossRefPubMedGoogle Scholar
  30. Johnson CH, Kondo T, Goto K (1992) Circadian rhythms in Chlamydomonas. In: Honma K, Honma S, Hiroshige T (eds) Circadian clocks from cell to human: Proceedings of the Fourth Sapporo Symposium on Biological Rhythms. Hokkaido University Press, Sapporo, pp 139–155Google Scholar
  31. Kiaulehn S, Voytsekh O, Fuhrmann M, Mittag M (2007) The presence of UG-repeat sequences in the 3′-UTRs of reporter luciferase mRNAs mediates circadian expression and can determine acrophase in Chlamydomonas reinhardtii. J Biol Rhythms 22:275–277. doi: 10.1177/0748730407301053 CrossRefPubMedGoogle Scholar
  32. Kitanishi K, Igarashi J, Havasaka K, Hikage N, Saiful I, Yamauchi S, Uchida T, Ishimori K, Shimizu T (2008) Heme-binding characteristics of the isolated PAS-A domain of mouse Per2, a transcriptional regulatory factor associated with circadian rhythms. Biochemistry 47:6157–6168. doi: 10.1021/bi7023892 CrossRefPubMedGoogle Scholar
  33. Kondo T, Johnson CH, Hastings JW (1991) Action spectrum for resetting the circadian phototaxis rhythm in the CW15 strain of Chlamydomonas. I. Cells in darkness. Plant Physiol 95:197–205CrossRefPubMedGoogle Scholar
  34. Kottke T, Hegemann P, Dick B, Heberle J (2006) The photochemistry of the light-, oxygen-, and voltage-sensitive domains in the algal blue light receptor phot. Biopolymers 82:373–378. doi: 10.1002/bip.20510 CrossRefPubMedGoogle Scholar
  35. Kucho K, Okamoto K, Tabata S, Fukuzawa H, Ishiura M (2005) Identification of novel clock-controlled genes by cDNA macroarray analysis in Chlamydomonas reinhardtii. Plant Mol Biol 57:889–906. doi: 10.1007/s11103-005-3248-1 CrossRefPubMedGoogle Scholar
  36. Manichaikul A, Ghamsari L, Hom EFY, Lin Ch, Murray RR, Chang RL, Balaji S, Hao T, Shen Y, Chavali AK, Thiele I, Yang X, Fan Ch, Mello E, Hill DE, Vidal M, Salehi-Ashtiani K, Papin JA (2009) Metabolic network analysis integrated with transcript verification for sequenced genomes. Nature Methods 6:589–592. doi: 10.1038/nmeth.1348 CrossRefPubMedGoogle Scholar
  37. Marshall WF (2008) The cell biological basis of ciliary disease. J Cell Biol 180:17–21. doi: 10.1083/jcb.200710085 CrossRefPubMedGoogle Scholar
  38. Matsuo T, Okamoto K, Onai K, Niwa Y, Shimogawara K, Ishiura M (2008) A systematic forward genetic analysis identified components of the Chlamydomonas circadian system. Genes Dev 22:918–930. doi: 10.1101/gad.1650408 CrossRefPubMedGoogle Scholar
  39. May P, Christian JO, Kempa S, Walther D (2009) ChlamyCyc: an integrative systems biology database and webportal for Chlamydomonas reinhardtii. BMC Genomics 10:209. doi: 10.1186/1471-2164-10-209 CrossRefPubMedGoogle Scholar
  40. Mehra A, Baker CL, Loros JJ, Dunlap JC (2009) Post-translational modifications in circadian rhythms. Trends Biochem Sci 34:483–490. doi: 10.1016/j.tibs.2009.06.006 CrossRefPubMedGoogle Scholar
  41. Meng OJ, McMaster A, Beesley S, Lu WQ, Gibbs J, Parks D, Collins J, Farrow S, Donn R, Ray D, Loudon A (2008) Ligand modulation of REV-ERBalpha fuction resets the peripheral circadian clock in a phasic manner. J Cell Sci 121:3629–3635. doi: 10.1242/10.1242/jcs.035048 CrossRefPubMedGoogle Scholar
  42. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L et al (2007) The evolution of key animal and plant functions is revealed by analysis of the Chlamydomonas genome. Science 318:245–250. doi: 10.1126/science.1143609 CrossRefPubMedGoogle Scholar
  43. Mergenhagen D (1984) Circadian clock: genetic characterization of a short period mutant of Chlamydomonas reinhardii. Eur J Cell Biol 33:13–18PubMedGoogle Scholar
  44. Mergenhagen D, Schweiger HG (1975) The effect of different inhibitors of transcription and translation on the expression and control of circadian rhythm in individual cells of Acetabularia. Exp Cell Res 94:321–326CrossRefPubMedGoogle Scholar
  45. Mergenhagen D, Mergenhagen E (1987) The biological clock of Chlamydomonas reinhardii in space. Eur J Cell Biol 43:203–207PubMedGoogle Scholar
  46. Mittag M (1996) Conserved circadian elements in phylogenetically diverse algae. Proc Natl Acad Sci USA 93:14401–14404CrossRefPubMedGoogle Scholar
  47. Mittag M, Wagner V (2003) The circadian clock of the unicellular eukaryotic model organism Chlamydomonas reinhardtii. Biol Chem 384:689–695. doi: 10.1515/BC.2003.077 CrossRefPubMedGoogle Scholar
  48. Mittag M, Kiaulehn S, Johnson CH (2005) The circadian clock in Chlamydomonas reinhardtii. What is for? What is similar to? Plant Physiol 137:399–409. doi: 10.1104/pp.104.052415 CrossRefPubMedGoogle Scholar
  49. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 100:13940–13945. doi: 10.1073/pnas.1936192100 CrossRefPubMedGoogle Scholar
  50. Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, Iwasaki H, Oyama T, Kondo T (2005) Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308:414–415. doi: 10.1126/science.1108451 CrossRefPubMedGoogle Scholar
  51. Nikaido SS, Johnson CH (2000) Daily and circadian variation in survival from ultraviolet radiation in Chlamydomonas reinhardtii. Photochem Photobiol 71:758–765. doi: 10.1562/0031-8655(2000)0710758DACVIS2.0.CO2 CrossRefPubMedGoogle Scholar
  52. Pajuelo E, Pajuelo P, Clemente MT, Marquez AJ (1995) Regulation of the expression of ferredoxin-nitrite reductase in synchronous cultures of Chlamydomonas reinhardtii. Biochim Biophys Acta 1249:72–78PubMedGoogle Scholar
  53. Pazour GJ, Agrin N, Leszyk J, Witman GB (2005) Proteomic analysis of a eukaryotic cilium. J Cell Biol 170:103–113. doi: 10.1083/jcb.200504008 CrossRefPubMedGoogle Scholar
  54. Ral JP, Colleoni C, Wattebled F, Dauvillée D, Nempont C, Deschamps P, Li Z, Morell MK, Chibbar R, Purton S, d’Hulst C, Ball SG (2006) Circadian clock regulation of starch metabolism establishes GBSSI as a major contributor to amylopectin synthesis in Chlamydomonas reinhardtii. Plant Physiol 142:305–317. doi: 10.1104/pp.106.081885 CrossRefPubMedGoogle Scholar
  55. Reisdorph NA, Small GD (2004) The CPH1 gene of Chlamydomonas reinhardtii encodes two forms of cryptochrome whose levels are controlled by light-induced proteolysis. Plant Physiol 134:1546–1554. doi: 10.1104/pp.103.031930 CrossRefPubMedGoogle Scholar
  56. Reiter RJ (1993) The melatonin rhythm: both a clock and a calendar. Experientia 49:654–664. doi: 10.1007/BF01923947 CrossRefPubMedGoogle Scholar
  57. Rensing L, Ruoff P (2002) Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases. Chronobiol Int 19:807–864. doi: 10.1081/CBI-120014569 CrossRefPubMedGoogle Scholar
  58. Robson F, Costa MM, Hepworth S, Vizir I, Pineiro M, Reeves PH, Putterill J, Coupland G (2001) Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J 28:619–631. doi: 10.1046/j.1365-313x.2001.01163.x CrossRefPubMedGoogle Scholar
  59. Rockwell NC, Su Y-S, Lagarias JC (2006) Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol 75:837–858. doi: 10.1146/annurev.arplant.56.032604.144208 CrossRefGoogle Scholar
  60. Rolland N, Atteia A, Decottignies P, Garin J, Hippler M, Kreimer G, Lemaire SD, Mittag M, Wagner V (2009) Chlamydomonas proteomics. Curr Opin Microbiol 12:285–291. doi: 10.16/j.mib.2009.04.001 CrossRefPubMedGoogle Scholar
  61. Romero JM, Valverde F (2009) Evolutionarily conserved photoperiodic mechanisms in plants. Plant Signaling & Behavior 4:642–644. doi: 10.1016/j.cub.2009.01.044 CrossRefGoogle Scholar
  62. Rupprecht J (2009) From systems biology to fuel—Chlamydomonas reinhardtii as a model for a systems biology approach to improve biohydrogen production. J Biotechnol 142:10–20. doi: 10.1016/j.jbiotec.2009.02.008 CrossRefPubMedGoogle Scholar
  63. Salvador ML, Klein U, Bogorad L (1998) Endogenous fluctuations of DNA topology in the chloroplast of Chlamydomonas reinhardtii. Mol Cell Biol 18:7235–7242PubMedGoogle Scholar
  64. Sato E, Sagami I, Uchida T, Sato A, Kitagawa T, Igarashi J, Shimizu T (2004) SOUL in mouse eyes is a new hexameric heme-binding protein with characteristic optical absorption, resonance Raman spectral and heme-binding properties. Biochemistry 43:14189–14198. doi: 10.1021/bi048742i CrossRefPubMedGoogle Scholar
  65. Schmidt M, Gessner G, Luff M, Heiland I, Wagner V, Kaminski M, Geimer S, Eitzinger N, Reissenweber T, Voytsekh O et al (2006) Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements. Plant Cell 18:1908–1930. doi: 10.1105/tpc.106.041749 CrossRefPubMedGoogle Scholar
  66. Schöning JC, Streitner C, Meyer IM, Gao Y, Staiger D (2008) Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis. Nucleic Acids Res 36:6977–6987. doi: 10.1093/nar/gkn847 CrossRefPubMedGoogle Scholar
  67. Serrano G, Herrera-Palau R, Romero JM, Serrano A, Coupland G, Valverde F (2009) Chlamydomonas CONSTANS and the evolution of plant photoperiodic signaling. Curr Biol 19:359–368. doi: 10.1016/j.cub.2009.01.044 CrossRefPubMedGoogle Scholar
  68. Silflow CD, Lefebvre PA (2001) Assembly and motility of eukaryotic cilia and flagella. Lessons from Chlamydomonas reinhardtii. Plant Physiol 127:1500–1507. doi: 10.1104/pp.010807 CrossRefPubMedGoogle Scholar
  69. Sofola O, Sundram V, Ng F, Kleyner Y, Morales J, Botas J, Jackson FR, Nelson DL (2008) The Drosophila FMRP and LARK RNA-binding proteins function together to regulate eye development and circadian behavior. Neurosci 28:10200–10205. doi: 10.1523/JNEUROSCI.2786-08.2008 CrossRefGoogle Scholar
  70. Straley SC, Bruce VG (1979) Stickiness to glass: circadian changes in the cell surface of Chlamydomonas reinhardtii. Plant Physiol 63:1175–1181CrossRefPubMedGoogle Scholar
  71. Suzuki L, Johnson CH (2002) Photoperiodic control of germination in the unicell Chlamydomonas. Naturwissenschaften 89:214–220. doi: 10.1007/s00114-002-0302-6 CrossRefPubMedGoogle Scholar
  72. Sweeney BM, Haxo FT (1961) Persistence of a photosynthetic rhythm in enucleated Acetabularia. Science 134:1361–1363CrossRefPubMedGoogle Scholar
  73. Tsuda K, Kuwasako K, Takahashi M, Someya T, Inoue M, Tereda T, Kobayashi N, Shirouzu M, Kigawa T, Tanaka A et al (2009) Structural basis for the sequence-specific RNA-recognition mechanism of human CUG-BP1 RRM3. Nucleic Acids Res 37:5151–5166. doi: 10.1093/nar/gkp546 CrossRefPubMedGoogle Scholar
  74. Voytsekh O, Seitz SB, Iliev D, Mittag M (2008) Both subunits of the circadian RNA-binding protein CHLAMY1 can integrate temperature information. Plant Physiol 147:2179–2193. doi: 10.1104/pp.108.118570 CrossRefPubMedGoogle Scholar
  75. Wagner V, Fiedler M, Markert C, Hippler M, Mittag M (2004) Functional proteomics of circadian expressed proteins from Chlamydomonas reinhardtii. FEBS Lett 559:129–135. doi: 10.1016/S0014-5793(04)00051-1 CrossRefPubMedGoogle Scholar
  76. Wagner V, Ullmann K, Mollwo A, Kaminski M, Mittag M, Kreimer G (2008) The phosphoproteome of a Chlamydomonas reinhardtii eyespot fraction includes key proteins of the light signaling pathway. Plant Physiol 146:772–788. doi: 10.1104/pp.107.109645 CrossRefPubMedGoogle Scholar
  77. Wagner V, Boesger J, Mittag M (2009) Sub-proteome analysis in the green flagellate alga Chlamydomonas reinhardtii. J Basic Microbiol 49:32–41. doi: 10.1002/jobm.200800292 CrossRefPubMedGoogle Scholar
  78. Waltenberger H, Schneid C, Grosch JO, Bareiss A, Mittag M (2001) Identification of target mRNAs for the clock-controlled RNA-binding protein Chlamy1 from C. reinhardtii. Mol Genet Genomics 265:180–188. doi: 10.1007/s004380000406 CrossRefPubMedGoogle Scholar
  79. Wijnen H, Young MW (2006) Interplay of circadian clocks and metabolic rhythms. Annu Rev Genet 40:409–448. doi: 10.1146/annurev.genet.40.110405.090603 CrossRefPubMedGoogle Scholar
  80. Woelfle MA, Xu Y, Qin X, Johnson CH (2007) Circadian rhythms of superhelical status of DNA in cyanobacteria. Proc Natl Acad Sci USA 104:18819–18824. doi: 10.1073/pnas.0705069104 CrossRefPubMedGoogle Scholar
  81. Yang J, Kim KD, Lucas A, Drahos KE, Santos CS, Mury SP, Capelluto DG, Finkielstein CV (2008) A novel heme-regulatory motif mediates heme-dependent degradation of the circadian factor period 2. Mol Cell Biol 28:4697–4711. doi: 10.128/MCB.00236-08 CrossRefPubMedGoogle Scholar
  82. Zhao B, Schneid C, Iliev D, Schmidt EM, Wagner V, Wollnik F, Mittag M (2004) The circadian RNA-binding protein CHLAMY1 represents a novel type heteromer of RNA recognition motif and lysine homology-containing subunits. Eukaryot Cell 3:815–825. doi: 10.1128/EC.3.3.815-825.2004 CrossRefPubMedGoogle Scholar
  83. Zylka MJ, Reppert SM (1999) Discovery of a putative heme-binding protein family (SOUL/HBP) by two-tissue suppression subtractive hybridization and database searches. Brain Res Mol Brain Res 74:175–181. doi: 10.1016/S0169-328X(99)00277-6 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Thomas Schulze
    • 1
  • Katja Prager
    • 1
  • Hannes Dathe
    • 1
  • Juliane Kelm
    • 1
  • Peter Kießling
    • 1
  • Maria Mittag
    • 1
  1. 1.Institute of General Botany and Plant PhysiologyFriedrich-Schiller-UniversityJenaGermany

Personalised recommendations