Protoplasma

, Volume 243, Issue 1–4, pp 117–128 | Cite as

Ranunculus glacialis L.: successful reproduction at the altitudinal limits of higher plant life

  • Johanna Wagner
  • Gerlinde Steinacher
  • Ursula Ladinig
Original Article

Abstract

Biodiversity decreases with increasing altitude, mainly because of the increasingly adverse climate. In the European Alps, only a few plant species occur above 4,000 m a.s.l., among these is Ranunculus glacialis L. Current studies have shown that R. glacialis has a highly conservative growth strategy and low developmental plasticity in response to different dates of snowmelt. Therefore, it was of particular interest to observe whether this strategy is maintained at higher altitudes and to reveal the reproductive limits. We examined the effect of the date of snowmelt on reproductive development and reproductive success in R. glacialis over several years at two subnival sites (2,650 and 2,880 m a.s.l.) and at a nival site (3,440 m a.s.l.) in the Austrian Alps. At the subnival sites, reproductive performance was relatively stable (prefloration period, i.e. snowmelt to onset of anthesis, 2–3 weeks; postfloration period, i.e. onset of anthesis until fruit maturity, 4–5 weeks). Depending on the date of flowering, the mean seed/ovule (S/O) ratio was 0.5–0.8. The temporal safety margin between seed maturation and the onset of winter conditions was at least 1 month. The situation was quite different in the nival zone: the prefloration period usually lasted 1 month, anthesis up to 2 weeks, and seed development 6–7 weeks; when seeds matured in time, the S/O ratio was 0.4–0.6. Overall, R. glacialis shows a high developmental plasticity. At higher altitudes, R. glacialis can double the time taken for seed development but runs a high risk of seeds not maturing in time.

Keywords

Ranunculus glacialis Developmental plasticity Embryology Mountain plant Prefloration period Reproductive success Seed development 

Abbreviations

S/O ratio

Seed/ovule ratio

DAA

Days after onset of anthesis

SN-L

Subnival low

SN-H

Subnival high

doy

Day of year

References

  1. Anchisi E (1985) Quatrieme contribution à l´étude de la flore valaisanne. Bull Murithienne 102:115–126Google Scholar
  2. Arroyo MTK, Armesto J, Primack R (1985) Community studies in pollination ecology in the high temperate Andes of Central Chile. II. Effect of temperature on visitation rates and pollination possibilities. Plant Syst Evol 149:187–203CrossRefGoogle Scholar
  3. Baskin CC, Baskin JM (1998) Seeds: ecology, biogeography, and evolution of dormancy and germination. Academic, San Diego, California, pp 1–666Google Scholar
  4. Billings WD, Bliss LC (1959) An alpine snowbank environment and its effects on vegetation, plant development, and productivity. Ecology 40:388–397CrossRefGoogle Scholar
  5. Boesewinkel FD, Bouman F (1995) The seed: structure and function. In: Kigel J, Galili G (eds) Seed development and germination. Marcel Dekker Inc., New York, pp 1–24Google Scholar
  6. Cleve A (1901) Zum Pflanzenleben in nordschwedischen Hochgebirgen. Bihang till Kungliga Svenska Vetenskapsakademien Handlingar, Vol. 26/III. Norstedt, Stockholm, pp. 1–105Google Scholar
  7. Cooper EJ (2004) Out of sight, out of mind: thermal acclimation of root respiration in arctic Ranunculus. Arct Antarct Alp Res 36:308–313CrossRefGoogle Scholar
  8. Cosendai A.-C., Hörandl E (2010) Cytotype stability, facultative apomixix and geographical parthenogenesis in Ranunculus kuepferi (Ranunculaceae). doi:10.1093/aob/mcp304
  9. Crawford RMM (2008) Plants at the Margin. Cambridge University Press, Cambridge, pp 1–478Google Scholar
  10. Crawford RMM, Smith LC (1997) Responses of some high Arctic shore plants to variable lengths of growing season. Opera Bot 132:201–214Google Scholar
  11. Crawford RMM, Chapman HM, Abbott RJ, Balfour J (1993) Potential impact of climatic warming on Arctic vegetation. Flora 188:367–381Google Scholar
  12. Danks HV (2004) Seasonal adaptations in Arctic insects. Integr Comp Biol 44:85–94CrossRefGoogle Scholar
  13. Diemer M (1992) Population dynamics and spatial arrangement of Ranunculus glacialis L., an alpine perennial herb, in permanent plots. Vegetatio 103:159–166Google Scholar
  14. Engell K (1995) Embryo morphology of the Ranunculaceae. Plant Syst Evol (Suppl) 9:207–216Google Scholar
  15. Escaravage N, Wagner J (2004) Pollination effectiveness and pollen dispersal in a Rhododendron ferrugineum (Ericaceae) population. Plant Biol 6:606–615CrossRefPubMedGoogle Scholar
  16. Forbis TA, Diggle PK (2001) Subnivean embryo development in the alpine herb Caltha leptosepala (Ranunculaceae). Can J Bot 79:635–642CrossRefGoogle Scholar
  17. Förster P (1997) Die Keimpflanzen der Tribus Ranunculaceae DC. und der Tribus Adonideae Kunth (Ranunculaceae). Flora 192:133–142Google Scholar
  18. Galen C, Stanton M (1991) Consequences of emergence phenology for reproductive success in Ranunculus adoneus (Ranunculaceae). Am J Bot 78:978–988CrossRefGoogle Scholar
  19. Galen C, Stanton M (1995) Responses of snowbed plant species to changes in growing-season length. Ecology 76:1546–1557CrossRefGoogle Scholar
  20. García-Camacho R, Totland Ø (2009) Pollen limitation in the alpine: a meta-analysis. Arct Antarct Alp Res 41:103–111CrossRefGoogle Scholar
  21. Grabherr G, Gottfried M, Gruber A, Pauli H (1995) Patterns and current changes in alpine plant diversity. In: Chapin FS III, Körner C (eds) Arctic and alpine biodiversity. Ecological studies 113. Springer, Berlin, pp 167–181Google Scholar
  22. Heer O (1885) Über die nivale Flora der Schweiz. Neue Denkschr. Allg. Schweiz. Ges. Gesamt Naturwiss 24:4–114Google Scholar
  23. Herr JM (1971) A new clearing-squash technique for the study of ovule development in angiosperms. Am J Bot 58:785–790CrossRefGoogle Scholar
  24. Hörandl E (2008) Evolutionary implications of self-compatibility and reproductive fitness in the apomictic Ranunculus auricomus polyploid complex (Ranunculaceae). Int J Plant Sci 169:1219–1228CrossRefPubMedGoogle Scholar
  25. Hörandl E, Paun O (2007) Patterns and sources of genetic diversity in apomictic plants: implications for evolutionary potentials. In: Hörandl E, Grossniklaus U, van Dijk PJ, Sharbel TF (eds) Apomixis: evolution, mechanisms and perspectives. Monographs in Plant Systematics, Regnum Vegetabile volume 147. ARG Gantner Verlag, Rugell, Rugell, pp 169–194Google Scholar
  26. Hörandl E, Paun O, Johansson JT, Lehnebach C, Armstrong T, Chen L, Lockhart P (2005) Phylogenetic relationships and evolutionary traits in Ranunculus s.l. (Ranunculaceae) inferred from ITS sequence analysis. Molec Phylog Evol 36:305–327CrossRefGoogle Scholar
  27. Huelber K, Gottfried M, Pauli H, Reiter K, Winkler M, Grabherr G (2006) Phenological responses of snowbed species to snow removal dates in the Central Alps: implications for climate warming. Arct Antarct Alp Res 38:99–103CrossRefGoogle Scholar
  28. Inouye D, Wielgolaski FE (2003) High altitude climates. In: Schwartz MD (ed) Phenology: an integrative environmental science. Kluwer Academic Publishers, Dordrecht, pp 195–214Google Scholar
  29. Inouye D, Morales MA, Dodge GJ (2002) Variation in timing and abundance of flowering by Delphinium barbeyi Huth (Ranunculaceae): the roles of snowpack, frost, and La Niña, in the context of climate change. Oecologia 130:543–550CrossRefGoogle Scholar
  30. Itagaki T, Sakai S (2006) Relationship between floral longevity and sex allocation among flowers within inflorescences in Aquilegia buergeriana var. oxysepala (Ranunculaceae). Am J Bot 93:1320–1327CrossRefGoogle Scholar
  31. Järvinen A (1989) The life history of Ranunculus glacialis, an arctic–alpine perennial herb, in Finnish Lapland. Holarct Ecol 12:152–162Google Scholar
  32. Johri BM, Ambegaokar KB, Srivastava PS (1992) Comparative embryology of angiosperms, vol 1. Springer, Berlin, pp 1–614Google Scholar
  33. Körner C (2003) Alpine plant life, 2nd edn. Springer, Berlin, pp 1–349Google Scholar
  34. Kudo G (1991) Effects of snow-free period on the phenology of alpine plants inhabiting snow patches. Arct Alp Res 23:436–443CrossRefGoogle Scholar
  35. Kudo G, Suzuki S (1999) Flowering phenology of alpine plant communities along a gradient of snowmelt timing. Polar Biosci 12:100–113Google Scholar
  36. Ladinig U, Wagner J (2005) Sexual reproduction of the high mountain plant Saxifraga moschata Wulfen at varying lengths of the growing season. Flora 200:502–515Google Scholar
  37. Ladinig U, Wagner J (2007) Timing of sexual reproduction and reproductive success in the high-mountain plant Saxifraga bryoides L. Plant Biol 9:683–693CrossRefPubMedGoogle Scholar
  38. Landolt E (1992) Unsere Alpenflora. Fischer Verlag, Stuttgart, Jena, pp 1–318Google Scholar
  39. Larcher W, Wagner J (1976) Temperaturgrenzen der CO2-Aufnahme und Temperaturresistenz der Blätter von Gebirgspflanzen im vegetationsaktiven Zustand. Oecol Plant 11:361–374Google Scholar
  40. Larcher W, Wagner J (2009) High mountain bioclimate: temperatures near the ground recorded from the timberline to the nival zone in the Central Alps. Contrib Nat Hist Berne 12:857–874Google Scholar
  41. Larcher W, Wagner J, Lütz C (1997) Effect of heat on photosynthesis, dark respiration and cellular ultrastructure of the arctic-alpine psychrophyte Ranunculus glacialis. Photosynthetica 34:219–232CrossRefGoogle Scholar
  42. Larcher W, Kainmüller C, Wagner J (2010) Survival types of high mountain plants under extreme temperatures. Flora 205:3–18Google Scholar
  43. McCall C, Primack RB (1992) Influence of flower characteristics, weather, time of day, and season on insect visitation rates in three plant communities. Am J Bot 79:434–442CrossRefGoogle Scholar
  44. McGraw JB, Antonovics J (1983) Experimental ecology of Dryas octopetala ecotypes. I. Ecotypic differentiation and life-cycle stages of selection. J Ecol 71:879–897CrossRefGoogle Scholar
  45. Meusel H, Jäger E, Weinert E (1965) Vergleichende Chorologie der Zentraleuropäischen Flora. Karten. Gustav Fischer Verlag, Jena, pp 1–258Google Scholar
  46. Molau U (1993) Relationships between flowering phenology and life history strategies in tundra plants. Arct Alp Res 25:391–402CrossRefGoogle Scholar
  47. Molau U (1997) Phenology and reproductive success in arctic plants: susceptibility to climate change. In: Oechel WC, Callaghan T, Gilmanov T, Holten JI, Maxwell B, Molau U, Sveinbjörnsson B (eds) Global change and arctic terrestrial ecosystems. Ecological studies 124. Springer, Berlin, pp 153–170Google Scholar
  48. Moser W, Brzoska W, Zachhuber K, Larcher W (1977) Ergebnisse des IBP-Projekts Hoher Nebelkogel 3184 m. Sitzungsber Österr Akad Wiss, Math-naturwiss Klasse Abt I 186:387–419Google Scholar
  49. Muñoz A, Arroyo MTK (2006) Pollen limitation and spatial variation of reproductive success in the insect-pollinated shrub Chuquiraga oppositifolia (Asteraceae) in the Chilean Andes. Arct Antarct Alp Res 38:608–613CrossRefGoogle Scholar
  50. Ozenda P (1988) Die Vegetation der Alpen. Elsevier, München, pp 1–353Google Scholar
  51. Pauli H, Gottfried M, Grabherr G (1999) Vascular plant distribution patterns at the low-temperature limits of plant life—the alpine–nival ecotone of Mount Schrankogel (Tyrol, Austria). Phytocoenologia 29:297–325Google Scholar
  52. Paun O, Lehnebach C, Johansson JT, Lockhart P, Hörandl E (2005) Phylogenetic relationships and biogeography of Ranunculus and allied genera (Ranunculaceae) in the Mediterranean region and in the European Alpine System. Taxon 54:911–930CrossRefGoogle Scholar
  53. Philipp M, Böcher J, Mattsson O, Woodell SR (1990) A quantitative approach to the sexual reproductive biology and population structure in some arctic flowering plants: Dryas integrifolia, Silene acaulis and Ranunculus nivalis. Medd Grønland, Biosci 34:3–60Google Scholar
  54. Pickering CM (1997a) Breeding systems of Australian Ranunculus in the alpine region. Nord J Bot 17:613–620CrossRefGoogle Scholar
  55. Pickering CM (1997b) Reproductive strategies and constraints of alpine plants as illustrated by five species of Australian alpine Ranunculus. Opera Bot 132:101–108Google Scholar
  56. Pluess AR, Schütz W, Stöcklin J (2005) Seed weight increases with altitude in the Swiss Alps between related species but not among populations of individual species. Oecologia 144:55–61CrossRefPubMedGoogle Scholar
  57. Prock S, Körner C (1996) A cross-continental comparison of phenology, leaf dynamics and dry matter allocation in arctic and temperate zone herbaceous plants from contrasting altitudes. Ecol Bull 45:93–103Google Scholar
  58. Richards AJ (1997) Plant breeding systems. Chapman & Hall, London, pp 1–529Google Scholar
  59. Robertson AW, Lloyd DG (1993) Rates of pollen deposition and removal in Myosotis colensoi. Funct Ecol 7:549–559CrossRefGoogle Scholar
  60. Rønning OI (1996) The flora of Svalbard. Norwegian Polar Institute, Oslo, pp 1–184Google Scholar
  61. Schönswetter P, Tribsch A, Stehlik I, Niklfeld H (2004) Glacial history of high alpine Ranunculus glacialis (Ranunculaceae) in the European Alps in a comparative phylogeographical context. Biol J Linn Soc 81:183–195CrossRefGoogle Scholar
  62. Stanton ML, Galen C (1997) Life on the edge: adaptation versus environmentally mediated gene flow in the snow buttercup, Ranunculus adoneus. Am Nat 150:143–178CrossRefGoogle Scholar
  63. Steinacher G, Wagner J (2010) Flower longevity and duration of pistil receptivity in high mountain plants. doi:10.1016/j.flora.2009.12.012
  64. Taschler D, Neuner G (2004) Summer frost resistance and freezing patterns measured in situ in leaves of major alpine plant growth forms in relation to their upper distribution boundary. Plant Cell Environ 27:737–746CrossRefGoogle Scholar
  65. Totland Ø (1993) Pollination in alpine Norway: flowering phenology, insect visitors, and visitation rates in two plant communities. Can J Bot 71:1072–1079Google Scholar
  66. Totland Ø (1994) Intraseasonal variation in pollination intensity and seed set in an alpine population of Ranunculus acris in southwestern Norway. Ecography 17:159–165CrossRefGoogle Scholar
  67. Totland Ø (2001) Environment-dependent pollen limitation and selection on floral traits in an alpine species. Ecology 82:2233–2244CrossRefGoogle Scholar
  68. Totland Ø, Alatalo JM (2002) Effects of temperature and date of snowmelt on growth, reproduction, and flowering phenology in the arctic/alpine herb, Ranunculus glacialis. Oecologia 133:168–175CrossRefGoogle Scholar
  69. Totland Ø, Schulte-Herbrüggen B (2003) Breeding system, insect flower visitation, and floral traits of two alpine Cerastium species in Norway. Arct Antarct Alp Res 35:242–247CrossRefGoogle Scholar
  70. Wagner J, Reichegger B (1997) Phenology and seed development of the alpine sedges Carex curvula and Carex firma in response to contrasting topoclimates. Arct Alp Res 29:291–299CrossRefGoogle Scholar
  71. Wiens D (1984) Ovule survivorship, brood size, life history, breeding systems, and reproductive success in plants. Oecologia 64:47–53CrossRefGoogle Scholar
  72. Yakovlev MS (1981) Comparative embryology of flowering plants. Vol 1, Winteraceae—Juglandaceae. Nauka, St Petersburg, pp. 1–263Google Scholar
  73. Zimmermann W (1975) Ranunculaceae. In: Rechinger KH, Damboldt J (eds) Gustav Hegi—Illustrierte Flora von Mitteleuropa. Vol 3/3, Paul Parey, Berlin-Hamburg, pp 53–341Google Scholar
  74. Zoller H, Lenzin H, Rusterholz H-P, Stöcklin J (2005) Increasing population density and seed production with altitude in Eritrichium nanum (Boraginaceae)—an arctic–alpine obligatory seeder. Arct Antarct Alp Res 37:41–48CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Johanna Wagner
    • 1
  • Gerlinde Steinacher
    • 1
  • Ursula Ladinig
    • 1
  1. 1.Institute of BotanyUniversity of InnsbruckInnsbruckAustria

Personalised recommendations