, Volume 233, Issue 1–2, pp 1–5 | Cite as

Are histones, tubulin, and actin derived from a common ancestral protein?

  • J. Gardiner
  • P. McGee
  • R. Overall
  • J. Marc
New Ideas in Cell Biology


Histones and the cytoskeletal components tubulin and actin all act as thermal ratchets, using the energy present in Brownian motion to do work. All three also bind to nucleotides. Here we suggest that histones, tubulin, and actin derive from a common ancestral protein. There is some sequence similarity between histone 2A and the bacterial tubulin homologue FtsZ. Histones and actin also share some sequence similarity in the nucleotides and at phosphate-binding sites. Thus, actin and tubulin may also be related, although this is not obvious from sequence analysis. Indeed, actin and tubulin are closely functionally related and cooperate in many cellular processes. Interestingly, recent advances in nanotechnology suggest that thermal ratchets may be able to impart lifelike properties; thus, the evolution of the ancestral histone, tubulin, and actin thermal ratchet may have been crucial in the development of complexity in living organisms.

Keywords: Histone; Tubulin; Actin; Thermal ratchet; Cytoskeleton. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, C 2001The process of creating life. The nature of order, book 2Centre for Environmental StructureBerkeley, CalifGoogle Scholar
  2. Best, A, Ahmed, S, Kozma, R, Lim, L 1996The Ras-related GTPase Rac1 binds tubulinJ Biol Chem27137563762PubMedCrossRefGoogle Scholar
  3. Böhm, KJ, Vater, W, Steinmetzer, P, Unger, E 1990Nucleation of macrotubules on double-walled microtubule seedsEur J Cell Biol513337PubMedGoogle Scholar
  4. Carrino, JJ, Laffler, TG 1986Transcription of alpha-tubulin and histone H4 genes begins at the same point in the Physarum cell cycleJ Cell Biol10216661670PubMedCrossRefGoogle Scholar
  5. Cavalier-Smith, T 1988Origin of the cell nucleusBioEssays97278PubMedCrossRefGoogle Scholar
  6. Chung, CY, Firtel, RA 1999PAKa, a putative PAK family member, is required for cytokinesis and the regulation of the cytoskeleton in Dictyostelium discoideum cells during chemotaxisJ Cell Biol147559576PubMedCrossRefGoogle Scholar
  7. Collings, DA, Lill, AW, Himmelspach, R, Wasteneys, GO 2006Hypersensitivity to cytoskeletal antagonists demonstrates microtubule-microfilament cross-talk in the control of root elongation in Arabidopsis thaliana New Phytol170275290PubMedCrossRefGoogle Scholar
  8. Corces, VG, Salas, J, Sala, ML, Avila, J 1978Binding of microtubule proteins to DNA: specificity of the interactionEur J Biochem86473479PubMedCrossRefGoogle Scholar
  9. Covelo, G, Sarandeses, CS, Diaz-Jullien, C, Freire, M 2006Prothymosin alpha interacts with free core histones in the nucleus of dividing cellsJ Biochem140627637PubMedCrossRefGoogle Scholar
  10. Cueille, N, Blanc, CT, Popa-Nita, S, Kasas, S, Catsicas, S, Dietler, G, Riederer, BM 2007Characterization of MAP1B heavy chain interaction with actinBrain Res Bull71610618PubMedCrossRefGoogle Scholar
  11. De Petrocellis, L, Quagliarotti, G, Tomei, L, Geraci, G 1986Structuring of H1 histone. Evidence of high-affinity binding sites for phosphate ionsEur J Biochem156143148PubMedCrossRefGoogle Scholar
  12. Evans, BA, Shields, AR, Carroll, RL, Washburn, S, Falvo, MR, Superfine, R 2007Magnetically actuated nanorod arrays as biomimetic ciliaNano Lett714281434PubMedCrossRefGoogle Scholar
  13. Farias, GA, Muñoz, JP, Garrido, J, Maccioni, RB 2002Tubulin, actin, and tau protein interactions and the study of their macromolecular assembliesJ Cell Biochem85315324PubMedCrossRefGoogle Scholar
  14. Fujii, T, Hiromori, T, Hamamoto, M, Suzuki, T 1997Interaction of chicken gizzard smooth muscle calponin with brain microtubulesJ Biochem122344351PubMedGoogle Scholar
  15. Gao, YS, Hubbert, CC, Lu, J, Lee, YS, Lee, JY, Yao, TP 2007Histone deacetylase 6 regulates growth factor-induced actin remodelling and endocytosisMol Cell Biol2786378647PubMedCrossRefGoogle Scholar
  16. González, M, Cambiazo, V, Maccioni, RB 1998The interaction of Mip-90 with microtubules and actin filaments in human fibroblastsExp Cell Res239243253PubMedCrossRefGoogle Scholar
  17. Grazi, E, Magri, E, Pasquali-Ronchetti, I 1982Multiple supramolecular structures formed by interaction of actin with protamineBiochem J2053137PubMedGoogle Scholar
  18. Griffith, LM, Pollard, TD 1982The interaction of actin filaments with microtubules and microtubule-associated proteinsJ Biol Chem25791439151PubMedGoogle Scholar
  19. Gröschel-Stewart, U, Lehmann-Klose, S, Magel, E, Baumgart, P 1989Histones bind to contractile proteins and inhibit actomyosin ATPaseBiochem Int18519524PubMedGoogle Scholar
  20. Harata, M, Oma, Y, Mizuno, S, Jiang, YW, Stillman, DJ, Wintersberger, U 1999The nuclear actin-related protein of Saccharomyces cerevisiae, Act3p/Arp4, interacts with core histonesMol Biol Cell1025952605PubMedGoogle Scholar
  21. Head, BP, Patel, HH, Roth, DM, Murray, F, Swaney, JS, Niesman, IR, Farquhar, MG, Insel, PA 2006Microtubules and actin microfilaments regulate lipid raft/caveolae localization of adenylyl cyclase signalling componentsJ Biol Chem2812639126399PubMedCrossRefGoogle Scholar
  22. Hoshikawa, Y, Kwon, HJ, Yoshida, M, Horinouchi, S, Beppu, T 1994Trichostatin A induces morphological changes and gelsolin expression by inhibiting histone deacetylase in human carcinoma cell linesExp Cell Res214189197PubMedCrossRefGoogle Scholar
  23. Hubbert, C, Guardiola, A, Shao, R, Kawaguchi, Y, Ito, A, Nixon, A, Yoshida, M, Wang, XF, Yao, TP 2002HDAC6 is a microtubule-associated deacetylaseNature417455458PubMedCrossRefGoogle Scholar
  24. Ishikawa, M, Murofushi, H, Sakai, H 1983Bundling of microtubules in vitro by fodrinJ Biochem9412091217PubMedGoogle Scholar
  25. Ivanchenko, M, Avramova, Z 1992Interaction of MAR-sequences with nuclear matrix proteinsJ Cell Biochem50190200PubMedCrossRefGoogle Scholar
  26. Jaffe, A, Vinella, D, D’Ari, R 1997The Eschericia coli histone-like protein HU affects DNA initiation, chromosome partitioning via MukB, and cell division via Min CDEJ Bacteriol17934943499PubMedGoogle Scholar
  27. Janson, ME, Dogterom, M 2004Scaling of microtubule force-velocity curves obtained at different tubulin concentrationsPhys Rev Lett92248101PubMedCrossRefGoogle Scholar
  28. Knoblauch, M, Peters, WS 2004Biomimetic actuators: where technology and cell biology mergeCell Mol Life Sci6124972509PubMedCrossRefGoogle Scholar
  29. Lestourgeon, WM, Forer, A, Yang, YZ, Bertram, JS, Pusch, HP 1975Contractile proteins. Major components of nuclear and chromosome non-histone proteinsBiochim Biophys Acta379529552PubMedGoogle Scholar
  30. Li, W, Dou, SX, Xie, P, Wang, PY 2006Brownian dynamics simulation of directional sliding of histone octamers caused by DNA bendingPhys Rev E Stat Nonlin Soft Matter Phys73051909PubMedGoogle Scholar
  31. Lockhart, A, Kendrick-Jones, J 1998Interaction of the N-terminal domain of MukB with the bacterial tubulin homologue FtsZFEBS Lett430278282PubMedCrossRefGoogle Scholar
  32. Magri, E, Zaccarini, M, Grazi, E 1978The interaction of histone and protamine with actin. Possible involvement in the formation of the mitotic spindleBiochem Biophys Res Commun8212071210PubMedCrossRefGoogle Scholar
  33. Martin-Trillo, M, Lázaro, A, Poethig, RS, Gómez-Mena, C, Piñeiro, MA, Martinez-Zapater, JM, Jarillo, JA 2006EARLY IN SHORT DAYS (ESD1) encodes ACTIN-RELATED PROTEIN 6 (AtARP6), a putative component of chromatin remodelling complexes that positively regulates FLC accumulation in Arabidopsis Development13312411252PubMedCrossRefGoogle Scholar
  34. Melki, R, Cowan, NJ 1994Facilitated folding of actins and tubulins occurs via a nucleotide-dependent interaction between cytoplasmic chaperonin and distinctive folding intermediatesMol Cell Biol1428952904PubMedGoogle Scholar
  35. Melki, R, Vainberg, IE, Chow, RL, Cowan, NJ 1993Chaperonin-mediated folding of vertebrate actin-related protein and gamma-tubulinJ Cell Biol12213011310PubMedCrossRefGoogle Scholar
  36. Mermoud, JE, Tassin, A-M, Pehrson, JR, Brockdorff, N 2001Centrosomal association of histone macroH2A1.2 in embryonic stem cells and somatic cellsExp Cell Res268245251PubMedCrossRefGoogle Scholar
  37. Mielnicki, LM, Ying, AM, Head, KL, Asch, HL, Asch, BB 1999Epigenetic regulation of gelsolin expression in human breast cancer cellsExp Cell Res249161176PubMedCrossRefGoogle Scholar
  38. Mithieux, G, Alquier, C, Roux, B, Rousset, B 1984Interaction of tubulin with chromatin proteins H1 and core histonesJ Biol Chem2591552315531PubMedGoogle Scholar
  39. Mithieux, G, Roux, B, Rousset, B 1986Tubulin-chromatin interactions: evidence for tubulin-binding sites on chromatin and isolated oligonucleosomesBiochim Biophys Acta8884961PubMedCrossRefGoogle Scholar
  40. Multigner, L, Gagnon, J, Van Dorsselaer, A, Job, D 1992Stabilization of sea urchin flagellar microtubules by histone H1Nature363339CrossRefGoogle Scholar
  41. Nilsson, P, Mannermaa, RM, Oikarinen, J, Grundström, T 1992DNA binding of histone H1 is modulated by nucleotidesFEBS Lett3136770PubMedCrossRefGoogle Scholar
  42. Nolz, JC, Gomez, TS, Billadeau, DD 2005The Ezh2 methyltransferase complex: actin up in the cytosolTrends Cell Biol15514517PubMedCrossRefGoogle Scholar
  43. Ookata, K, Hisanaga, S, Okumura, E, Kishimoto, T 1993Association of p34cdc2/cyclin B complex with microtubules in starfish oocytesJ Cell Sci105873881PubMedGoogle Scholar
  44. Pan, ZQ, Hurwitz, J 1993Reconstitution of cyclin-dependent cdc2 and cdk2 kinase activities in vitroJ Biol Chem2682043320442PubMedGoogle Scholar
  45. Peterson, JL, McConkey, EH 1976Non-histone chromosomal proteins from HeLa cells. A survey by high resolution, two-dimensional electrophoresisJ Biol Chem251548554PubMedGoogle Scholar
  46. Pinto, I, Winston, F 2000Histone H2A is required for normal centromere function in Saccharomyces cerevisiae EMBO J1915981612PubMedCrossRefGoogle Scholar
  47. Rasmussen, TP, Mastrangelo, M-A, Eden, A, Pehrson, JR, Jaenisch, R 2000Dynamic relocalization of histone macroH2A1 from centrosomes to inactive X chromosomes during X inactivationJ Cell Biol15011891198PubMedCrossRefGoogle Scholar
  48. Sardar, HS, Yang, J, Showalter, AM 2006Molecular interactions of arabinogalactan proteins with cortical microtubules and F-actin in Bright Yellow-2 tobacco cultured cellsPlant Physiol14214691479PubMedCrossRefGoogle Scholar
  49. Sattilaro, RF 1986Interaction of microtubule-associated protein 2 with actin filamentsBiochemistry2520032009PubMedCrossRefGoogle Scholar
  50. Sharma, VM, Litersky, JM, Bhaskar, K, Lee, G 2007Tau impacts on growth-factor-stimulated actin remodellingJ Cell Sci120748757PubMedCrossRefGoogle Scholar
  51. Shen, X, Ranallo, R, Choi, E, Wu, C 2003Involvement of actin-related proteins in ATP-dependent chromatin remodellingMol Cell12147155PubMedCrossRefGoogle Scholar
  52. Shimo-Oka, T, Hayashi, M, Watanabe, Y 1980Tubulin-myosin interaction. Some properties of binding between tubulin and myosinBiochemistry1949214926PubMedCrossRefGoogle Scholar
  53. Shiomi, D, Margolin, W 2007Dimerization or oligomerization of the actin-like FtsA protein enhances the integrity of the cytokinetic Z ringMol Microbiol6613961415PubMedGoogle Scholar
  54. Sider, JR, Mandato, CA, Weber, KL, Zandy, AJ, Beach, D, Finst, RJ, Skoble, J, Bement, WM 1999Direct observation of microtubule-f-actin interaction in cell free lysatesJ Cell Sci11219471956PubMedGoogle Scholar
  55. Steinboeck, F, Bogusch, A, Kaufman, A, Heidenreich, E 2007The nuclear actin-related protein of Saccharomyces cerevisiae, Arp4, directly interacts with the histone acetyltransferase Esa1pJ Biochem141661668PubMedCrossRefGoogle Scholar
  56. Su, IH, Dobenecker, MW, Dickinson, E, Oser, M, Basavaraj, A, Marqueron, R, Viale, A, Reinberg, D, Wülfing, C, Tarakhovsky, A 2005Polycomb group protein ezh2 controls actin polymerization and cell signalingCell121425436PubMedCrossRefGoogle Scholar
  57. Sun, Q, Yu, X-C, Margolin, W 1998Assembly of the FtsZ ring at the central division site in the absence of the chromosomeMol Microbiol29491503PubMedCrossRefGoogle Scholar
  58. Tarkka, T, Raatikainen, E, Friman, S, Oikarinen, J 1995The ATP/ADP binding domains of actin are conserved in nucleosome complexed with histone H1 and high mobility group-17 proteinBiochem Biophys Res Commun212509514PubMedCrossRefGoogle Scholar
  59. Tovich, PR, Sutovsky, P, Oko, RJ 2004Novel aspect of perinuclear theca assembly revealed by immunolocalization of non-nuclear somatic histones during bovine spermiogenesisBiol Reprod7111821194PubMedCrossRefGoogle Scholar
  60. Uematsu, Y, Kogo, Y, Ohishi, I 2007Disassembly of actin filaments by botulinum C2 toxin and actin-filament-disrupting agents induces assembly of microtubules in human leukaemia linesBiol Cell99141150PubMedCrossRefGoogle Scholar
  61. Unger, E, Böhm, KJ, Müller, H, Grossman, H, Fenske, H, Vater, W 1988Formation of double-walled microtubules and multilayered tubulin sheets by basic proteinsEur J Cell Biol4698104PubMedGoogle Scholar
  62. Ursic, D, Sedbrook, JC, Himmel, KL, Culbertson, MR 1994The essential yeast Tcp1 protein affects actin and microtubulesMol Biol Cell510651080PubMedGoogle Scholar
  63. Vandermoere, F, El Yazidi-Bilkoura, I, Demont, Y, Slomianny, C, Antol, J, Lemoine, J, Hondermarck, H 2007Proteomics exploration reveals that actin is a signalling target of the kinase AktMol Cell Proteomics6114124PubMedGoogle Scholar
  64. Van Oudenaarden, A, Theriot, JA 1999Cooperative symmetry-breaking by actin polymerization in a model for cell motilityNat Cell Biol1493499PubMedCrossRefGoogle Scholar
  65. Verde, F, Labbé, JC, Dorée, M, Karsenti, E 1990Regulation of microtubule dynamics by cdc2 protein kinase in cell-free extracts of Xenopus eggsNature343233238PubMedCrossRefGoogle Scholar
  66. Verhey, KJ, Gaertig, J 2007The tubulin codeCell Cycle621522160PubMedGoogle Scholar
  67. Verkhovsky, AB, Surgucheva, IG, Gelfand, VI, Rosenblat, VA 1981G-actin-tubulin interactionFEBS Lett135290294PubMedCrossRefGoogle Scholar
  68. Villasante, A, Abad, JP, Méndez-Lago, M 2007Centromeres were derived from telomeres during the evolution of the eukaryotic chromosomeProc Natl Acad Sci USA1041054210547PubMedCrossRefGoogle Scholar
  69. Walss-Bass, C, Prasad, V, Kreisberg, JI, Ludueña, RF 2001Interaction of the betaIV-tubulin isotype with actin stress fibers in cultured rat kidney mesangial cellsCell Motil Cytoskeleton49200207PubMedCrossRefGoogle Scholar
  70. Waltregny, D, Glénisson, W, Tran, SL, North, BJ, Verdin, E, Colige, A, Castronovo, V 2005Histone deacetylase HDAC8 associates with smooth muscle alpha-actin and is essential for smooth muscle contractilityFASEB J19966968PubMedGoogle Scholar
  71. Wang, H, Olsen, RW 2000Binding of the GABA(A) receptor-associated protein (GABARAP) to microtubules and microfilaments suggests involvement of the cytoskeleton in GABARAPGABA(A) receptor interactionJ Neurochem75644655PubMedCrossRefGoogle Scholar
  72. Woehlke, G, Ruby, AK, Hart, CL, Ly, B, Hom-Booher, N, Vale, RD 1997Microtubule interaction site of the kinesin motorCell90207216PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of SydneyCamperdown

Personalised recommendations