Protoplasma

, Volume 229, Issue 2–4, pp 163–174 | Cite as

Inositol 1,4,5-trisphosphate and Ran expression during simulated and real microgravity

  • B. Kriegs
  • R. Theisen
  • H. Schnabl
Article

Summary.

In order to gain further insight into the signal transduction pathway concerning gravitropism, we studied the expression profiles of mRNA in etiolated sunflower (Helianthus annuus L.) seedlings. Differential-display reverse transcriptase PCR product assayed by capillary electrophoresis revealed the small GTPase Ran, regulating nuclear import and export of proteins. Parallel analysis of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) release by a highly advanced system of metal-dye detection combined with high-performance liquid chromatography provided evidence that the second messenger Ins(1,4,5)P3 is modulated by changes of the gravity vector. Investigations by fast clinorotation and sounding rockets established a positive correlation between the Ins(1,4,5)P3 level and the expression rate of Ran mRNA during simulated and real microgravity. Since an asymmetric distribution of auxin during graviresponse is suggested to induce differential cell elongation, additional information on the perception and transduction pathways was achieved by auxin stimulation experiments. While we were able to demonstrate an auxin-dependent production of Ins(1,4,5)P3, the expression of Ran mRNA was not affected by auxin. Finally, besides the phosphoinositide system as one element of the signal transduction chain linking graviperception to graviresponse, a Ran-mediated interaction model of extracellular microgravity signal perception and intercellular transduction pathway is proposed.

Keywords: Helianthus annuus; Hypocotyl protoplast; Gravitropism; Inositol phosphate; Signal transduction; Gene expression; GTP-binding protein Ran. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ainley, WM, Walker, JC, Nagao, RT, Key, JL 1988Sequence and characterization of two auxin-regulated genes from soybeanJ Biol Chem2631065810666PubMedGoogle Scholar
  2. Alexandre, J, Lassalles, JP, Kado, RT 1990Opening of calcium channels in isolated red beet root vacuole membrane by inositol 1,4,5-trisphosphateNature343567570CrossRefGoogle Scholar
  3. Allen, GJ, Muir, SR, Sanders, D 1995Release of Ca2+ from individual plant vacuoles by both InsP3 and cyclic ADP-riboseScience268735737PubMedCrossRefGoogle Scholar
  4. Assmann, SM, Simoncini, L, Schroeder, JI 1985Blue light activates electrogenic ion pumping in guard cell protoplasts of Vicia fabaNature318285287CrossRefGoogle Scholar
  5. Bare, DJ, Kettlun, CS, Liang, M, Bers, DM, Mignery, GA 2005Cardiac type 2 inositol 1,4,5-trisphosphate receptor: interaction and modulation by calcium/calmodulin dependent protein kinase IIJ Biol Chem2801591215920PubMedCrossRefGoogle Scholar
  6. Bauer, CS, Hoth, S, Haga, K, Philippar, K, Aoki, N, Hedrich, R 2000Differential expression and regulation of K+ channels in the maize coleoptile: molecular and biophysical analysis of cells isolated from cortex and vasculaturePlant J24139145PubMedCrossRefGoogle Scholar
  7. Berridge, MJ 1993Cell signalling. A tale of two messengersNature365388389PubMedCrossRefGoogle Scholar
  8. Boonsirichai, K, Sedbrook, JC, Chen, R, Gilroy, S, Masson, PH 2003ALTERED RESPONSE TO GRAVITY is a peripheral membrane protein that modulates gravity-induced cytoplasmic alkalinization and lateral auxin transport in plant statocytesPlant Cell1526122625PubMedCrossRefGoogle Scholar
  9. Chen, R, Rosen, E, Masson, PH 1999Gravitropism in higher plantsPlant Physiol120343350PubMedCrossRefGoogle Scholar
  10. Ciciarello, M, Mangiacasale, R, Thibier, C, Guarguaglini, G, Marchetti, E, Di Fiore, B, Lavia, P 2004Importin beta is transported to spindle poles during mitosis and regulates Ran-dependent spindle assembly factors in mammalian cellsJ Cell Sci11765116522PubMedCrossRefGoogle Scholar
  11. Denti, S, Sirri, A, Cheli, A, Rogge, L, Innamorati, G, Putignano, S, Fabbri, M, Pardi, R, Bianchi, E 2004RanBPM is a phosphoprotein that associates with the plasma membrane and interacts with the integrin LFA-1J Biol Chem2791302713034PubMedCrossRefGoogle Scholar
  12. Ettlinger, C, Lehle, L 1988Auxin induces rapid changes in phosphatidylinositol metabolitesNature331176178PubMedCrossRefGoogle Scholar
  13. Firn, RD, Digby, J 1980The establishment of tropic curvature in plantsAnnu Rev Plant Physiol31131148CrossRefGoogle Scholar
  14. Friml, J, Wisniewska, J, Benkova, E, Mendgen, K, Palme, K 2002Lateral relocation of auxin efflux regulator PIN3 mediates tropism in ArabidopsisNature415806809PubMedGoogle Scholar
  15. Gendreau, E, Traas, J, Desnos, T, Grandjean, O, Caboche, M, Hofte, H 1997Cellular basis of hypocotyl growth in Arabidopsis thalianaPlant Physiol114295305PubMedCrossRefGoogle Scholar
  16. Görlich, D, Dabrowski, M, Bischoff, F-R, Kutay, U, Bork, P, Hartmann, E, Prehn, S, Izaurralde, E 1997A novel class of RanGTP binding proteinsJ Cell Biol1386580PubMedCrossRefGoogle Scholar
  17. Haberland, G 1900Über die Perzeption des geotropischen ReizesBer Dtsch Bot Ges18261272Google Scholar
  18. Hager, A, Debus, G, Edel, H-G, Stransky, H, Serrano, R 1991Auxin induces exocytosis and the rapid synthesis of a high-turnover pool of plasma-membrane H+-ATPasePlanta185527537CrossRefGoogle Scholar
  19. Haizel, T, Merkle, T, Pay, A, Fejes, E, Nagy, F 1997Characterization of proteins that interact with the GTP-bound form of the regulatory GTPase Ran in ArabidopsisPlant J1193103PubMedCrossRefGoogle Scholar
  20. Hamilton, DW, Hills, A, Kohler, B, Blatt, MR 2000Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acidProc Natl Acad Sci USA9749674972PubMedCrossRefGoogle Scholar
  21. Itano, N, Okamoto, S, Zhang, D, Lipton, SA, Ruoslahti, E 2003Cell spreading controls endoplasmic and nuclear calcium: a physical gene regulation pathway from the cell surface to the nucleusProc Natl Acad Sci USA10051815186PubMedCrossRefGoogle Scholar
  22. Jones, AM 1994Auxin-binding proteinsAnnu Rev Plant Physiol Plant Mol Biol45393420CrossRefGoogle Scholar
  23. Jones, AM, Im, KH, Savka, MA, Wu, MJ, DeWitt, NG, Shillito, R, Binns, AN 1998Auxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1Science28211141117PubMedCrossRefGoogle Scholar
  24. Kanzaki, M, Nagasawa, M, Kojima, I, Sato, C, Naruse, K, Sokabe, M, Iida, H 1999Molecular identification of a eukaryotic, stretch-activated nonselective cation channelScience285882886PubMedCrossRefGoogle Scholar
  25. Keryer, G, Di Fiore, B, Celati, C, Lechtreck, K-F, Mogensen, M, Delouvee, A, Lavia, P, Bornens, M, Tassin, AM 2003Part of Ran is associated with AKAP450 at the centrosome: involvement in microtubule-organizing activityMol Biol Cell1442604271PubMedCrossRefGoogle Scholar
  26. Kim, HY, Cote, GG, Crain, RC 1996Inositol 1,4,5-trisphosphate may mediate closure of K+ channels by light and darkness in Samanea saman motor cellsPlanta198279287PubMedCrossRefGoogle Scholar
  27. Kim, SH, Arnold, D, Lloyd, A, Roux, SJ 2001Antisense expression of an Arabidopsis ran binding protein renders transgenic roots hypersensitive to auxin and alters auxin-induced root growth and development by arresting mitotic progressPlant Cell1326192630PubMedCrossRefGoogle Scholar
  28. Kimbrough, JM, Salinas-Mondragon, R, Boss, WF, Brown, CS, Sederoff, HW 2004The fast and transient transcriptional network of gravity and mechanical stimulation in the Arabidopsis root apexPlant Physiol13627902805PubMedCrossRefGoogle Scholar
  29. Kimbrough, JM, Brown, CS, Sederoff, HW 2005Co-expression and hormonal regulation of genes in response to gravity and mechanical stimulation in the Arabidopsis root apexASGSB Bull18117118Google Scholar
  30. Kiss, JZ, Wright, JB, Caspar, T 1996Gravitropism in roots of intermediate-starch mutants of ArabidopsisPhysiol Plant97237244PubMedCrossRefGoogle Scholar
  31. Lee, Y, Choi, YB, Suh, S, Lee, J, Assmann, SM, Joe, CO, Kelleher, JF, Crain, RC 1996Abscisic acid-induced phosphoinositide turnover in guard cell protoplasts of Vicia fabaPlant Physiol110987996PubMedGoogle Scholar
  32. Liang, P, Pardee, AB 1997

    Differential display: a general protocol

    Liang, PPardee, AB eds. Differential display methods and protocolsHumanaTotowa, NJ311
    CrossRefGoogle Scholar
  33. Lommel, C, Felle, HH 1997Ca2+ transport across the tonoplast of intact vacuoles from Chenopodium album suspension cells: ATP-dependent import and IP3-induced releasePlanta201477486CrossRefGoogle Scholar
  34. Lynch, TM, Lintilhac, PM, Domozych, D 1998Mechanotransduction molecules in the plant gravisensory response: amyloplast/statolith membranes contain a β1 integrin-like proteinProtoplasma20192100PubMedCrossRefGoogle Scholar
  35. Martinec, J, Feltl, T, Scanlon, CH, Lumsden, PJ, Machackova, I 2000Subcellular localization of a high affinity binding site for D-myo-inositol 1,4,5-trisphosphate from Chenopodium rubrumPlant Physiol124475483PubMedCrossRefGoogle Scholar
  36. Mayr, GW 1990

    Mass determination of inositol phosphates by high-performance liquid chromatography with postcolumn complexometry (metal–dye detection)

    Irvine, RF eds. Methods in inositide researchRavenNew York83108
    Google Scholar
  37. McClure, BA, Hagen, G, Brown, CS, Gee, MA, Guilfoyle, TJ 1989Transcription, organization, and sequence of an auxin-regulated gene cluster in soybeanPlant Cell1229239PubMedCrossRefGoogle Scholar
  38. Meijer, HJ, Munnik, T 2003Phospholipid-based signaling in plantsAnnu Rev Plant Biol54265306PubMedCrossRefGoogle Scholar
  39. Merkle, T 2001Nuclear import and export of proteins in plants: a tool for the regulation of signallingPlanta213499517PubMedCrossRefGoogle Scholar
  40. Merkle, T 2003Nucleo-cytoplasmic partitioning of proteins in plants: implications for the regulation of environmental and developmental signallingCurr Genet44231260PubMedCrossRefGoogle Scholar
  41. Merkle, T, Haizel, T, Matsumoto, T, Harter, K, Dallmann, G, Nagy, F 1994Phenotype of the fission yeast cell cycle regulatory mutant pim1-46 is suppressed by a tobacco cDNA encoding a small, Ran-like GTP-binding proteinPlant J6555565PubMedCrossRefGoogle Scholar
  42. Mulkey, TJ, Kuzmanoff, KM, Evans, ML 1981Correlations between proton efflux patterns and growth during geotropism and phototropism in maize and sunflowerPlanta152239241CrossRefGoogle Scholar
  43. Müller G (2000) Die Signaltransduktion über Inositol-1,4,5-trisphosphat in Sonnenblumen-Hypokotylprotoplasten am Beispiel des Schwerkraftreizes. Dissertation, Landwirtschaftliche Fakultät, Universität Bonn, Bonn, Federal Republic of Germany, http://hss.ulb.unibonn.de/diss_online/landw_fak/2000/mueller_georg
  44. Munnik, T, Irvine, RF, Musgrave, A 1998Phospholipid signaling in plantsBiochim Biophys Acta1389222272PubMedGoogle Scholar
  45. Nemec, B 1900Über die Art der Wahrnehmung des Schwerkraftreizes bei den PflanzenBer Dtsch Bot Ges18241245Google Scholar
  46. Parker, KE, Briggs, WR 1900Transport of indole-3-acetic acid during gravitropism in intact maize coleoptilesPlant Physioll9417631768Google Scholar
  47. Pasternak, T, Potters, G, Caubergs, R, Jansen, MA 2005Complementary interactions between oxidative stress and auxins control plant growth responses at plant, organ, and cellular levelJ Exp Bot5619912001PubMedCrossRefGoogle Scholar
  48. Perera, IY, Heilmann, I, Boss, WF 1999Transient and sustained increases in inositol 1,4,5-trisphosphate precede the differential growth response in gravistimulated maize pulviniProc Natl Acad Sci USA9658385843PubMedCrossRefGoogle Scholar
  49. Perera, IY, Heilmann, I, Chang, SC, Boss, WF, Kaufman, PB 2001A role for inositol 1,4,5-trisphosphate in gravitropic signaling and the retention of cold-perceived gravistimulation of oat shoot pulviniPlant Physiol12514991507PubMedCrossRefGoogle Scholar
  50. Ranjeva, R, Graziana, A, Mazars, C 1999Plant graviperception and gravitropism: a newcomer’s viewFASEB J13135141Google Scholar
  51. Richards, SA, Lounsbury, KM, Macara, IG 1995The C terminus of the nuclear RAN/TC4 GTPase stabilizes the GDP-bound state and mediates interactions with RCC1, RAN-GAP, and HTF9A/RANBP1J Biol Chem2701440514411PubMedCrossRefGoogle Scholar
  52. Sack, FD 1997Plastids and gravitropic sensingPlanta2036368CrossRefGoogle Scholar
  53. Sakurai, M, Pak, JY, Muramatsu, Y, Fukuhara, T 2004Integrin-like protein at the invaginated plasma membrane of epidermal cells in mature leaves of the marine angiosperm Zostera marina LPlanta220271277PubMedCrossRefGoogle Scholar
  54. Schnabl, H 2001

    Biotechnology in space

    Rehm, HJ eds. Special processes2Wiley-VCHWeinheim507521
    Google Scholar
  55. Sederoff, HW, Salinas-Mondragon, R, Perera, IY, Boss, WF, Braun, CS 2004The role of InsP3 in transcriptional regulation of gravitropismASGSB Bull1852Google Scholar
  56. Sheen, J 2001Signal transduction in maize and Arabidopsis mesophyll protoplastsPlant Physiol12714661475PubMedCrossRefGoogle Scholar
  57. Sievers, A, Kramer-Fischer, M, Braun, M, Buchen, B 1991The polar organization of the growing Chara rhizoid and the transport of statoliths are actin-dependentBot Acta104103109PubMedGoogle Scholar
  58. Smith, HM, Raikhel, NV 1998Nuclear localization signal receptor importin alpha associates with the cytoskeletonPlant Cell1017911799PubMedCrossRefGoogle Scholar
  59. Smith, HM, Hicks, GR, Raikhel, NV 1997Importin alpha from Arabidopsis thaliana is a nuclear import receptor that recognizes three classes of import signalsPlant Physiol114411417PubMedCrossRefGoogle Scholar
  60. Staves, MP 1997Cytoplasmic streaming and gravity sensing in Chara internodal cellsPlanta2037984CrossRefGoogle Scholar
  61. Swatzell, LJ, Edelmann, RE, Makaroff, CA, Kiss, JZ 1999Integrin-like proteins are localized to plasma membrane fractions, not plastids, in ArabidopsisPlant Cell Physiol40173183PubMedGoogle Scholar
  62. Takahashi, S, Katagiri, T, Hirayama, T, Yamaguchi-Shinozaki, K, Shinozaki, K 2001Hyperosmotic stress induces a rapid and transient increase in inositol 1,4,5-trisphosphate independent of abscisic acid in Arabidopsis cell culturePlant Cell Physiol42214222PubMedCrossRefGoogle Scholar
  63. Tiwari, SB, Wang, XJ, Hagen, G, Guilfoyle, TJ 2001AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxinPlant Cell1328092822PubMedCrossRefGoogle Scholar
  64. Tiwari, SB, Hagen, G, Guilfoyle, T 2003The roles of auxin response factor domains in auxin-responsive transcriptionPlant Cell15533543PubMedCrossRefGoogle Scholar
  65. Trewavas, A, Knight, M 1994Mechanical signalling, calcium and plant formPlant Mol Biol2613291341PubMedCrossRefGoogle Scholar
  66. Ulmasov, T, Hagen, G, Guilfoyle, TJ 1997ARF1, a transcription factor that binds to auxin response elementsScience27618651868PubMedCrossRefGoogle Scholar
  67. Ulmasov, T, Hagen, G, Guilfoyle, TJ 1999Activation and repression of transcription by auxin-response factorsProc Natl Acad Sci USA9658445849PubMedCrossRefGoogle Scholar
  68. Versel, JM, Pilet, PE 1986Distribution of growth and proton efflux in gravireactive roots of maize (Zea mays L.)Planta1672629CrossRefGoogle Scholar
  69. Wayne, R, Staves, MP 1996A down to earth model of gravisensing or Newton’s law of gravitation from the apple’s perspectivePhysiol Plant98917921PubMedCrossRefGoogle Scholar
  70. Webb, AAR, McAinsh, MR, Taylor, JE, Hetherington, AM 1996Calcium ions as intracellular second messengers in higher plantsAdv Bot Res224596CrossRefGoogle Scholar
  71. Wilson, AK, Pickett, FB, Turner, JC, Estelle, M 1990A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acidMol Gen Genet222377383PubMedCrossRefGoogle Scholar
  72. Xiong, TC, Jauneau, A, Ranjeva, R, Mazars, C 2004Isolated plant nuclei as mechanical and thermal sensors involved in calcium signallingPlant J401221PubMedCrossRefGoogle Scholar
  73. Young, LM, Evans, ML 1994Calcium-dependent asymmetric movement of 3H-indole-3-acetic acid across gravistimulated isolated root caps of maizePlant Growth Regul14235240CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • B. Kriegs
    • 1
  • R. Theisen
    • 1
  • H. Schnabl
    • 1
  1. 1.Institute for Molecular Physiology and Biotechnology of PlantsUniversity of BonnBonn

Personalised recommendations