Protoplasma

, Volume 229, Issue 2–4, pp 101–108 | Cite as

Indications for acceleration-dependent changes of membrane potential in the flagellate Euglena gracilis

  • P. R. Richter
  • M. Schuster
  • I. Meyer
  • M. Lebert
  • D.-P. Häder
Article

Summary.

The effects of the calcium sequester EGTA on gravitactic orientation and membrane potential changes in the unicellular flagellate Euglena gracilis were investigated during a recent parabolic-flight experiment aboard of an Airbus A300. In the course of a flight parabola, an acceleration profile is achieved which yields subsequently about 20 s of hypergravity (1.8 gn), about 20 s of microgravity, and another 20 s of hypergravity phases. The movement behavior of the cells was investigated with real-time, computer-based image analysis. Membrane potential changes were detected with a newly developed photometer which measures absorption changes of the membrane potential-sensitive probe oxonol VI. To test whether the data obtained by the oxonol device were reliable, the signal of non-oxonol-labelled cells was recorded. In these samples, no absorption shift was detected. Changes of the oxonol VI signals indicate that the cells depolarize during acceleration (very obvious in the step from microgravity to hypergravity) and slightly hyperpolarize in microgravity, which can possibly be explained with the action of Ca-ATPases. These signals (mainly the depolarization) were significantly suppressed in the presence of EGTA (5 mM). Gravitaxis in parallel was also inhibited after addition of EGTA. Initially, negative gravitaxis was inverted into a positive one. Later, gravitaxis was almost undetectable.

Keywords: Euglena gracilis; Gravitaxis; Image analysis; EGTA; Oxonol VI; Parabolic-flight campaign. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armitage, JP, Evans, CW 1981Comparison of the carotenoid bandshift and oxanol dyes to measure membrane potential changes during chemotactic stimulation of Rhodopseudomonas sphaeroides and Escherichia coliFEBS Lett12698102PubMedCrossRefGoogle Scholar
  2. Bashford, CL 1981The measurement of membrane potential using optical indicatorsBiosci Rep1183196PubMedCrossRefGoogle Scholar
  3. Bashford, CL, Chance, B, Prince, RC 1979Oxonol dyes as monitors of membrane potential: their behavior in photosynthetic bacteriaBiochim Biophys Acta5454657PubMedCrossRefGoogle Scholar
  4. Bräucker, R, Cogoli, A, Hemmersbach, R 2001

    Graviperception and graviresponse at the cellular level

    Baumstark-Khan, CHorneck, G eds. Astrobiology: the quest for the conditions of lifeSpringerBerlin Heidelberg New York284297
    Google Scholar
  5. Braun, M 2002Gravity perception requires statoliths settled on specific plasma membrane areas in characean rhizoids and protonemataProtoplasma219150159PubMedCrossRefGoogle Scholar
  6. Braun, M, Hauslage, J, Czogalla, A, Limbach, C 2004Tip-localized actin polymerization and remodeling, reflected by the localization of ADF, profilin and villin, are fundamental for gravity-sensing and polar growth in characean rhizoidsPlanta219379388PubMedCrossRefGoogle Scholar
  7. Brodhun, B, Häder, D-P 1993UV-induced damage of photoreceptor proteins in the paraflagellar body of Euglena gracilisPhotochem Photobiol58270274Google Scholar
  8. Checcucci, A, Colombetti, G, Ferrara, R, Lenci, F 1976Action spectra for photoaccumulation of green and colorless Euglena: evidence for identification of receptor pigmentsPhotochem Photobiol235154PubMedGoogle Scholar
  9. Doege, M, Ohmann, E, Tschiersch, H 2000Chlorophyll fluorescence quenching in the alga Euglena gracilisPhotosynth Res63159170PubMedCrossRefGoogle Scholar
  10. Freedmann, JC, Novak, TS 1983Membrane potentials associated with Ca-induced K conductance in human red blood cells: studies with a fluorescent oxonol dye, WW 781J Membr Biol725974CrossRefGoogle Scholar
  11. Friml, J, Palme, K 2002Polar auxin transport – old questions and new concepts?Plant Mol Biol49273284PubMedCrossRefGoogle Scholar
  12. Häder, D-P, Griebenow, K 1988Orientation of the green flagellate, Euglena gracilis, in a vertical column of waterFEMS Microbiol Ecol53159167CrossRefGoogle Scholar
  13. Häder, D-P, Liu, S-M 1990Motility and gravitactic orientation of the flagellate, Euglena gracilis, impaired by artificial and solar UV-B radiationCurr Microbiol21161168PubMedCrossRefGoogle Scholar
  14. Häder, D-P, Porst, M, Tahedl, H, Richter, P, Lebert, M 1997Gravitactic orientation in the flagellate Euglena gracilisMicrogravity Sci Technol105357Google Scholar
  15. Häder, D-P, Richter, P, Ntefidou, M, Lebert, M 2005Gravitational sensory transduction chain in flagellatesAdv Space Res3611821188CrossRefGoogle Scholar
  16. Haugland RP (2002) Handbook of fluorescent probes and research chemicals. Molecular Probes, Eugene, OregGoogle Scholar
  17. Hemmersbach, R, Voormanns, R, Bromeis, B, Schmidt, N, Rabien, H, Ivanova, K 1998Comparative studies of the graviresponses of Paramecium and LoxodesAdv Space Res2112851289PubMedCrossRefGoogle Scholar
  18. Iseki, M, Matsunaga, S, Murakami, A, Ohno, K, Shiga, K, Yoshida, C, Sugai, M, Takahashi, T, Hori, T, Watanabe, M 2002A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilisNature41510471051PubMedCrossRefGoogle Scholar
  19. Lebert, M, Häder, D-P 1999Image analysis: a versatile tool for numerous applicationsGIT Imaging and Microscopy199956Google Scholar
  20. Lebert, M, Porst, M, Richter, P, Häder, D-P 1999Physical characterization of gravitaxis in Euglena gracilisJ Plant Physiol155338343PubMedGoogle Scholar
  21. Mogami, Y, Ishii, J, Baba, SA 2001Theoretical and experimental dissection of gravity-dependent mechanical orientation in gravitactic microorganismsBiol Bull2012633PubMedGoogle Scholar
  22. Ntefidou, M, Iseki, M, Richter, P, Streb, C, Lebert, M, Watanabe, M, Häder, D-P 2003aRNA interference of genes involved in photomovement in Astasia longa and Euglena gracilis mutantsRecent Res Dev Biochem4925930Google Scholar
  23. Ntefidou, M, Iseki, M, Watanabe, M, Lebert, M, Häder, D-P 2003bPhotoactivated adenylyl cyclase controls phototaxis in the flagellate Euglena gracilisPlant Physiol13315171521CrossRefGoogle Scholar
  24. Richter, P, Lebert, M, Korn, R, Häder, D-P 2001aPossible involvement of the membrane potential in the gravitactic orientation of Euglena gracilisJ Plant Physiol1583539CrossRefGoogle Scholar
  25. Richter, P, Lebert, M, Tahedl, H, Häder, D-P 2001bCalcium is involved in the gravitactic orientation in colorless flagellatesJ Plant Physiol158689697CrossRefGoogle Scholar
  26. Richter, PR, Ntefidou, M, Streb, C, Faddoul, J, Lebert, M, Häder, D-P 2002aHigh light exposure leads to a sign change of gravitaxis in the flagellate Euglena gracilisActa Protozool41343351Google Scholar
  27. Richter, PR, Schuster, M, Wagner, H, Lebert, M, Häder, D-P 2002bPhysiological parameters of gravitaxis in the flagellate Euglena gracilis obtained during a parabolic flight campaignJ Plant Physiol159181190CrossRefGoogle Scholar
  28. Richter, P, Börnig, A, Streb, C, Ntefidou, M, Lebert, M, Häder, D-P 2003aEffects of increased salinity on gravitaxis in Euglena gracilisJ Plant Physiol160651656CrossRefGoogle Scholar
  29. Richter, PR, Streb, C, Ntefidou, M, Lebert, M, Häder, D-P 2003bHigh lightinduced sign change of gravitaxis in the flagellate Euglena gracilis is mediated by reactive oxygen speciesActa Protozool42197204Google Scholar
  30. Richter, P, Börnig, A, Streb, C, Ntefidou, M, Lebert, M, Häder, D-P 2003cEffects of increased salinity on gravitaxis and pigmentation in Euglena gracilisJ Plant Physiol160651656CrossRefGoogle Scholar
  31. Roberts, AM, Deacon, FM 2002Gravitaxis in motile micro-organisms: the role of fore-aft body asymmetryJ Fluid Mech452405423CrossRefGoogle Scholar
  32. Schlösser, UG 1994SAG, Sammlung von Algenkulturen at the University of GöttingenBot Acta107113186Google Scholar
  33. Starr, RC 1964The culture collection of algae at Indiana UniversityAm J Bot5110131044CrossRefGoogle Scholar
  34. Streb, C, Richter, P, Ntefidou, M, Lebert, M, Häder, D-P 2002Sensory transduction of gravitaxis in Euglena gracilisJ Plant Physiol159855862CrossRefGoogle Scholar
  35. Tahedl, H, Richter, P, Lebert, M, Häder, D-P 1998cAMP is involved in gravitaxis signal transduction of Euglena gracilisMicrogravity Sci Technol11173178Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • P. R. Richter
    • 1
  • M. Schuster
    • 1
  • I. Meyer
    • 2
  • M. Lebert
    • 1
  • D.-P. Häder
    • 1
  1. 1.Institute of Plant EcophysiologyUniversity of Erlangen-NürnbergErlangen
  2. 2.European Aeronautic Defence and Space CompanyBremen

Personalised recommendations