, Volume 228, Issue 4, pp 167–177 | Cite as

Nuclear DNA contents, rDNAs, and karyotype evolution in subgenus Vicia: III. The heterogeneous section Hypechusa

  • P. Caputo
  • M. Frediani
  • G. Venora
  • C. Ravalli
  • M. Ambrosio
  • R. Cremonini


Nuclear DNA contents, automated karyotype analyses, and sequences of internal transcribed spacers from ribosomal genes have been determined in the species belonging to section Hypechusa of the subgenus Vicia. Karyomorphological results and phylogenetic data generated from the comparison of rDNA (genes coding for rRNA) sequences showed that sect. Hypechusa is not monophyletic; however, some monophyletic units are apparent (one including Vicia galeata, V. hyrcanica, V. noeana, and V. tigridis, another including V. assyriaca, V. hybrida, V. melanops, V. mollis, and V. sericocarpa), which partly correspond to morphology-based infrasectional groups. The relationships among these species and the species in sections Faba, Narbonensis, Bithynicae, and Peregrinae have been also investigated.

Keywords: Vicia species; Section Hypechusa; Karyotype; Nuclear DNA content; DNA sequence; Phylogeny. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alefeld, F 1860Hypechusa, nov. gen ViciearumBot Z19165166Google Scholar
  2. Ball, P-W 1968

    Vicia L

    Tutin, TGHeywood, VHBurges, NAValentine, DHWalters, SMWebb, DA eds. Flora EuropaeaCambridge University PressCambridge129136
    Google Scholar
  3. Ceccarelli, M, Minelli, S, Maggini, F, Cionini, P-G 1995Genome size variation in Vicia faba Heredity74180187Google Scholar
  4. Felsenstein, J 1985Confidence limits on phylogenies: an approach using the bootstrapEvolution39783791CrossRefGoogle Scholar
  5. Fennell, SR, Powell, W, Wright, F, Ramsay, G, Wangh, R 1998Phylogenetic relationships between Vicia faba (Fabaceae) and related species inferred from chloroplast trnL sequencesPlant Syst Evol212247259CrossRefGoogle Scholar
  6. Frediani, M, Caputo, P, Venora, G, Ravalli, C, Ambrosio, M, Cremonini, R 2005Nuclear DNA contents, rDNAs and karyotype evolution in subgenus Vicia: II. Section Peregrinae Protoplasma226181190PubMedCrossRefGoogle Scholar
  7. Goloboff P (1999) Nona. Instruction manual. Published by the author, S. M. de Tucumán, ArgentinaGoogle Scholar
  8. Greilhuber, J 1986Severely distorted Feulgen-DNA amounts in Pinus after non-additive fixations as a result of meristematic self-tanning with vacuole contentsCan J Gen Cytol28409415Google Scholar
  9. Greilhuber, J, Speta, F 1976C-banded karyotypes in the Scilla hohenacheri group: S. persica and Puschkinia (Liliaceae)Plant Syst Evol126149188CrossRefGoogle Scholar
  10. Hall, TA 1999BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NTNucleic Acids Symp Ser419598Google Scholar
  11. Hanelt, P, Mettin, D 1989Biosystematics of the genus Vicia LAnnu Rev Ecol Syst20199223Google Scholar
  12. Huelsenbeck, PJ, Ronquist, F 2001MrBayes: Bayesian inference of phylogenyBioinformatics17754755PubMedCrossRefGoogle Scholar
  13. Huziwara, Y 1962Karyotype analysis in some genera of Compositae VIII: further studies on the chromosomes of Aster Am J Bot49116119CrossRefGoogle Scholar
  14. Khattab, AMA, Maxted, N, Bisby, FA 1988Close relatives of the faba bean from Syria: a new species of Vicia and notes on V. hyaeniscyamus (Leguminosae)Kew Bull43535540Google Scholar
  15. Kotseruba, VV, Venora, G, Blangiforti, S, Ruffini Castiglione, M, Cremonini, R 2000Cytology of Vicia species. IX. Nuclear DNA amount, chromatin organization and computer aided karyotyping of a Russian accession of Vicia faba LCaryologia53195204Google Scholar
  16. Kupicha, FK 1976The infrageneric structure of Vicia Not R Bot Gard Edinb34278326Google Scholar
  17. Leth, H, Jaaska, V 2002Cladistic and phenetic analysis of relationships in Vicia subgenus Vicia by morphology and isozymesPlant Syst Evol232237260CrossRefGoogle Scholar
  18. Levan, A, Freda, K, Sandberg, AA 1964Nomenclature for centromeric position chromosomesHereditas52201220CrossRefGoogle Scholar
  19. Maxted, N 1993A phenetic investigation of Vicia L. subgenus Vicia (Leguminosae, Vicieae)Bot J Linn Soc111155182CrossRefGoogle Scholar
  20. Maxted, N 1994A phenetic investigation on Vicia section Peregrinae Kupicha (Leguminosae, Papilionoideae, Vicieae)Edinb J Bot517597CrossRefGoogle Scholar
  21. Maxted N (1995) An ecogeographical study of Vicia subgenus Vicia. Systematic and ecogeographic studies on crop genepools. 8. IPGRI, Rome, ItalyGoogle Scholar
  22. Maxted, N, Douglas, C 1997A phenetic investigation of Vicia section Hypechusa (Alef.) Aschers. & Graebner (Leguminosae, Papilionoideae, Vicieae)Lagascalia19345370Google Scholar
  23. Maxted N, Khattab AMA, Bisby FA (1991) The newly discovered relatives of Vicia faba do little to resolve the enigma of its origin. In: Phitos D, Greuter W (eds) Proceedings of the VI OPTIMA meeting. Botanika Chronika 10. Botanical Institute, University of Patras, Athens, pp 435–465Google Scholar
  24. Nixon KC (1999) Winclada (beta) ver. 0.9.9. Published by the author, Ithaca, New York, USAGoogle Scholar
  25. Pavone, P, Salmeri, C, Scammacca, B 1995“Karyo 95” nuovo programma di gestione dei dati cariologiciG Bot Ital1292Google Scholar
  26. Potokina, EK, Tomooka, N, Vaughan, DA, Alexandrova, T, Xu, RQ 1999Phylogeny of Vicia subgenus Vicia (Fabaceae) based on analysis of RAPDs and RFLP of PCR amplified chloroplast genesGenet Res Crop Evol46149161CrossRefGoogle Scholar
  27. Scott, AJ, Knott, M 1974A cluster method for grouping means in the analysis of varianceBiometrics30505512CrossRefGoogle Scholar
  28. Stebbins, L 1971Chromosomal evolution in higher plantsEdward ArnoldLondonGoogle Scholar
  29. Thompson, JD, Higgins, DG, Gibson, TJ 1994CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choiceNucleic Acids Res2246734680PubMedGoogle Scholar
  30. Venora, G, Conicella, C, Errico, A, Saccardo, F 1991Karyotyping in plant by an image analysis systemJ Genet Breed45233240Google Scholar
  31. Venora, G, Ocampo, B, Singh, K, Saccardo, F 1995Karyotype of the Kabuli-type chickpea (Cicer arietinum L.) by image analysis systemCaryologia48147155Google Scholar
  32. Venora, G, Blangiforti, S, Cremonini, R 1998Karyotype analysis of twelve species belonging to genus Vigna Cytologia64117127Google Scholar
  33. Venora, G, Blangiforti, S, Frediani, M, Maggini, F, Gelati, M-T, Ruffini Castiglione, M, Cremonini, R 2000Nuclear DNA contents, rDNAs, chromatin organization and karyotype evolution in Vicia sect. faba Protoplasma213118125CrossRefGoogle Scholar
  34. Wheeler, W 1996Optimization alignment: the end of multiple sequence alignment in phylogenetics?Cladistics1219CrossRefGoogle Scholar
  35. Wheeler, W, Gladstein, D, De Laet, J 2002POY, phylogeny reconstruction via optimization of DNA and other data, version 3.0.11American Museum of Natural HistoryNew YorkGoogle Scholar
  36. Yokota, Y, Kawata, T, Iida, Y, Kato, A, Tanifuji, S 1989Nucleotide sequences of the 5.8S rRNA gene and internal transcribed spacer regions in carrot and broad bean ribosomal DNAJ Mol Evol29294301PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • P. Caputo
    • 1
  • M. Frediani
    • 2
  • G. Venora
    • 3
  • C. Ravalli
    • 3
  • M. Ambrosio
    • 4
  • R. Cremonini
    • 4
  1. 1.Sezione di Biologia Vegetale, Dipartimento delle Scienze BiologicheUniversità di Napoli Federico IINaples
  2. 2.Dipartimento di Agrobiologia ed AgrochimicaUniversità della TusciaViterbo
  3. 3.Stazione Sperimentale di Granicoltura per la SiciliaCaltagirone
  4. 4.Dipartimento di Scienze BotanicheUniversità di PisaPisa

Personalised recommendations