, 228:221 | Cite as

Cell suspension cultures of Populus tremula × P. tremuloides exhibit a high level of cellulose synthase gene expression that coincides with increased in vitro cellulose synthase activity

  • Anna B. Ohlsson
  • Soraya Djerbi
  • Anders Winzell
  • Laurence Bessueille
  • Veronika Ståldal
  • Xinguo Li
  • Kristina Blomqvist
  • Vincent Bulone
  • Tuula T. Teeri
  • Torkel BerglundEmail author


Compared to wood, cell suspension cultures provide convenient model systems to study many different cellular processes in plants. Here we have established cell suspension cultures of Populus tremula L. × P. tremuloides Michx. and characterized them by determining the enzymatic activities and/or mRNA expression levels of selected cell wall-specific proteins at the different stages of growth. While enzymes and proteins typically associated with primary cell wall synthesis and expansion were detected in the exponential growth phase of the cultures, the late stationary phase showed high expression of the secondary-cell-wall-associated cellulose synthase genes. Interestingly, detergent extracts of membranes from aging cell suspension cultures exhibited high levels of in vitro cellulose synthesis. The estimated ratio of cellulose to callose was as high as 50 : 50, as opposed to the ratio of 30 : 70 so far achieved with membrane preparations extracted from other systems. The increased cellulose synthase activity was also evidenced by higher levels of Calcofluor white binding in the cell material from the stationary-phase cultures. The ease of handling cell suspension cultures and the improved capacity for in vitro cellulose synthesis suggest that these cultures offer a new basis for studying the mechanism of cellulose biosynthesis.

Keywords: Calcofluor white binding; Cellulose synthase; In vitro cellulose synthesis; Populus tremula × P. tremuloides; Reverse transcription PCR; Suspension culture. 



xyloglucan endotransglycosylase


  1. Aloni, R 1980Role of auxin and sucrose in the differentiation of sieve and tracheary elements in plant tissue culturesPlanta150255263CrossRefGoogle Scholar
  2. Babb, VM, Haigler, CH 2001Sucrose phosphate synthase activity rises in correlation with high rate cellulose synthesis in three heterotrophic systemsPlant Physiol12712341242PubMedCrossRefGoogle Scholar
  3. Bilisics, L, Karácsonyi, S, Kubacková, M 1982UDP-D-glucose 4-epimerase activity of the tissue-culture of white poplars (Populus-alba l var-Pyramidalis)Coll Czech Chem Commun4715301536Google Scholar
  4. Blee, KA, Wheatly, ER, Bonham, VA, Mitchell, GP, Robertson, D, Slabas, AR, Burrell, MM, Wojtaszek, P, Bolwell, GP 2001Proteomic analysis reveals a novel set of cell wall proteins in a transformed tobacco cell culture that synthesises secondary walls as determined by biochemical and morphological parametersPlanta212404415PubMedCrossRefGoogle Scholar
  5. Bolwell, GP 1985Use of tissue cultures for studies on vascular differentiationDixon, RA eds. Plant cell culture: a practical approachIRL PressOxford107126Google Scholar
  6. Bradford, MM 1976A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnal Biochem72248254PubMedCrossRefGoogle Scholar
  7. Burton, RA, Shirley, NJ, King, BJ, Harvey, AJ, Fincher, GB 2004The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genesPlant Physiol134224236PubMedCrossRefGoogle Scholar
  8. Chaffey, N, Cholewa, E, Regan, S, Sundberg, B 2002Secondary xylem development in Arabidopsis: a model for wood formationPhysiol Plant114594600PubMedCrossRefGoogle Scholar
  9. Colombani, A, Djerbi, S, Bessueille, L, Blomqvist, K, Ohlsson, A, Berglund, T, Teeri, TT, Bulone, V 2004In vitro synthesis of (1→3)-β-D-glucan (callose) and cellulose by detergent extracts of membranes from cell suspension cultures of hybrid aspenCellulose11313327CrossRefGoogle Scholar
  10. Cosgrove, DJ 1999Enzymes and other agents that enhance cell wall extensibilityAnnu Rev Plant Physiol Mol Biol50391417CrossRefGoogle Scholar
  11. Cosgrove, DJ, Li, LC, Cho, H-T, Hoffmann-Benning, S, Moore, RC, Blecker, D 2002The growing world of expansinsPlant Cell Physiol4314361444PubMedCrossRefGoogle Scholar
  12. Darley, CP, Forrester, AM, McQueen-Mason, SJ 2001The molecular basis for plant cell wall extensionPlant Mol Biol47179195PubMedCrossRefGoogle Scholar
  13. Demura, T, Tashiro, G, Horiguchi, G, Kishimoto, N, Kubo, M, Matsuoka, N, Minami, A, Nagata-Hiwatashi, M, Nakamura, K, Okamura, Y, Sassa, N, Suzuki, S, Yazaki, J, Kikuchi, S, Fukuda, H 2002Visualization by comprehensive microarray analysis of gene expression programs during transdifferentiation of mesophyll cells into xylem cellsProc Natl Acad Sci USA991579415799PubMedCrossRefGoogle Scholar
  14. Djerbi, S, Aspeborg, H, Nilsson, P, Sundberg, B, Mellerowicz, E, Blomqvist, K, Teeri, TT 2004Identification and expression analysis of genes encoding putative cellulose synthases (CesA) in the hybrid aspen, Populus tremula (L.) × P. tremuloides (Michx.)Cellulose11301312CrossRefGoogle Scholar
  15. Djerbi, S, Lindskog, M, Arvestad, L, Sterky, F, Teeri, TT 2005The genome sequence of black cottonwood (Populus trichocarpa) reveals 18 conserved cellulose synthase (CesA) genesPlanta221739746PubMedCrossRefGoogle Scholar
  16. Doblin, MS, Kurek, I, Jacob-Wilk, D, Delmer, DP 2002Cellulose biosynthesis in plants: from genes to rosettesPlant Cell Physiol4314071420PubMedCrossRefGoogle Scholar
  17. Fukuda, H 1997Tracheary element differentiationPlant Cell911471156PubMedCrossRefGoogle Scholar
  18. Galbraith, DW 1981Microfluorimetric quantitation of cellulose biosynthesis by plant-protoplasts using calcofluor whitePhysiol Plant53111116CrossRefGoogle Scholar
  19. Gardiner, JC, Taylor, NG, Turner, R 2003Control of cellulose synthase complex localization in developing xylemPlant Cell1517401748PubMedCrossRefGoogle Scholar
  20. Garve, R, Luckner, M, Vogel, E, Tewes, A, Nover, L 1980Growth, morphogenesis and cardenolide formation in longterm cultures of Digitalis lanata Planta Med4092103CrossRefGoogle Scholar
  21. Gray-Mitsumune, M, Mellerowicz, EJ, Abe, H, Schrader, J, Winzéll, A, Sterky, F, Blomqvist, K, McQueen-Mason, S, Teeri, TT, Sundberg, B 2004Expansins abundant in secondary xylem belong to subgroup A of the α-expansin gene familyPlant Physiol13515521564PubMedCrossRefGoogle Scholar
  22. Hertzberg, M, Aspeborg, H, Schrader, J, Andersson, A, Erlandsson, R, Blomqvist, K, Bhalerao, R, Uhlén, M, Teeri, TT, Lundeberg, J, Sundberg, B, Nilsson, P, Sandberg, G 2001A transcriptional roadmap to wood formationProc Natl Acad Sci USA981473214737PubMedCrossRefGoogle Scholar
  23. Hetherington, PR, Fry, SC 1993Xyloglucan endotransglycosylase activity in carrot cell suspensions during cell elongation and somatic embryogenesisPlant Physiol103987992PubMedGoogle Scholar
  24. Joshi, CP, Bhandari, S, Ranjan, P, Kalluri, UC, Liang, X, Fujino, T, Samuga, A 2004Genomics of cellulose biosynthesis in poplarsNew Phytol1645361CrossRefGoogle Scholar
  25. Kärkönen, A, Koutaniemi, S, Mustonen, M, Brunow, G, Kilpeläinen, I, Teeri, TH, Simola, LK 2002Lignification related enzymes in Picea abies suspension culturesPhysiol Plant114343353PubMedCrossRefGoogle Scholar
  26. Kuboi, T, Yamada, Y 1978Regulation of the enzyme activities related to lignin synthesis in cell aggregates of tobacco cell cultureBiochim Biophys Acta542181190PubMedGoogle Scholar
  27. Lai Kee Him, J, Pelosi, L, Chanzy, H, Putaux, J-L, Bulone, V 2001Biosynthesis of (1→3)-β-D-glucan (callose) by detergent extracts of a microsomal fraction from Arabidopsis thaliana Eur J Biochem26846284638CrossRefGoogle Scholar
  28. Lai Kee Him, J, Chanzy, H, Mueller, M, Putaux, JL, Imai, T, Bulone, V 2002In vitro versus in vivo cellulose microfibrils from plant primary wall synthases: structural differencesJ Biol Chem2773693136939PubMedCrossRefGoogle Scholar
  29. Li, Y, Darley, CP, Ongaro, V, Flemming, A, Schipper, O, Baldauf, SL, McQueen-Mason, SJ 2002Plant expansins are a complex multigene family with an ancient evolutionary originPlant Physiol128854864PubMedCrossRefGoogle Scholar
  30. Milioni, D, Sado, P-E, Stacey, NJ, Domingo, C, Roberts, K, McCann, MC 2001Differential expression of cell-wall-related genes during the formation of tracheary elements in the Zinnia mesophyll cell systemPlant Mol Biol47221238PubMedCrossRefGoogle Scholar
  31. Mourelatou, M, Doonan, JH, McCann, MC 2004Transition of G1 to early S phase may be required for Zinnia mesophyll cells to trans-differentiate to tracheary elementsPlanta220172176PubMedCrossRefGoogle Scholar
  32. Nicol, F, Höfte, H 1998Plant cell expansion: scaling the wallCurr Opin Plant Biol11217PubMedCrossRefGoogle Scholar
  33. Ohmiya, Y, Takeda, T, Nakamura, S, Sakai, F, Hayashi, T 1995Purification and properties of a wall-bound endo-1,4-β-glucanase from suspension-cultured poplar cellsPlant Cell Physiol36607614PubMedGoogle Scholar
  34. Ohmiya, Y, Samejima, M, Shiroshi, M, Amano, Y, Kanda, T, Sakai, F, Hayashi, T 2000Evidence that endo-1,4-β-glucanases act on cellulose in suspension-cultured poplar cellsPlant J24147158PubMedCrossRefGoogle Scholar
  35. Okuda, K, Li, L, Kudlicka, K, Kuga, S, Brown, RM,Jr 1993β-Glucan synthesis in the cotton fiber. I. Identification of (1→4)-β- and (1→3)-β-glucans synthesized in vitroPlant Physiol10111311142PubMedGoogle Scholar
  36. Pelosi, L, Imai, T, Chanzy, H, Heux, L, Buhler, E, Bulone, V 2003Structural and morphological diversity of (1→3)-β-D-glucans synthesized in vitro by enzymes from Saprolegnia monoïca. Comparison with a corresponding in vitro product from blackberry (Rubus fruticosus)Biochemistry4262646274PubMedCrossRefGoogle Scholar
  37. Pesquet, E, Jauneau, A, Digonnet, C, Boudet, AM, Pichon, M, Goffner, D 2003 Zinnia elegans: the missing link from in vitro tracheary elements to xylemPhysiol Plant119463468CrossRefGoogle Scholar
  38. Richmond, TA, Somerville, CR 2000The cellulose synthase superfamilyPlant Physiol124495498PubMedCrossRefGoogle Scholar
  39. Roberts, AW, Frost, AO, Roberts, EM, Haigler, CH 2004Roles of microtubules and cellulose microfibril assembly in the localization of secondary-cell-wall deposition in developing tracheary elementsProtoplasma224217229PubMedCrossRefGoogle Scholar
  40. Roberts, K, McCann, M 2000Xylogenesis: the birth of a corpseCurr Opin Plant Biol3517522PubMedCrossRefGoogle Scholar
  41. Rose, KC, Bennett, AB 1999Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripeningTrends Plant Sci4176183PubMedCrossRefGoogle Scholar
  42. Stone, BA, Clarke, AE 1992Chemistry and biology of (1→3)-β-glucansLa Trobe University PressMelbourneGoogle Scholar
  43. Sulová, Z, Lednická, M, Farkas, V 1995A colorimetric assay for xyloglucan-endotransglycosylase from germinating seedsAnal Biochem2298085PubMedCrossRefGoogle Scholar
  44. Takeda, T, Mitsuishi, Y, Sakai, F, Hayashi, T 1996Xyloglucan endotransglycosylation in suspension-cultured poplar cellsBiosci Biotechnol Biochem6019501955PubMedCrossRefGoogle Scholar
  45. Takeda, T, Sakai, F, Hayashi, T 1997Expression of gene encoding endo-1,4-β-glucanase in suspension-cultured poplar (Populus alba L.) cellsBiosci Biotechnol Biochem61907908Google Scholar
  46. Tanaka, K, Murata, K, Yamazaki, M, Onosato, K, Miyao, A, Hirochika, H 2003Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wallPlant Physiol1337383PubMedCrossRefGoogle Scholar
  47. Taylor, NG, Howells, RM, Huttly, AK, Vickers, K, Turner, SR 2003Interactions among three distinct CesA proteins essential for cellulose synthesisProc Natl Acad Sci USA10014501455PubMedCrossRefGoogle Scholar
  48. Tsutsumi, Y, Sakai, K 1994Lignin biosynthesis in woody angiosperm tissues II. Peroxidase related to syringyl and guaiacyl lignin biosynthesis in Populus callus culturesMokuzai Gakkaishi40744750Google Scholar
  49. Updegraff, DM 1969Semi-micro determination of cellulose in biological materialsAnal Biochem32420424PubMedCrossRefGoogle Scholar
  50. Williamson, RE, Burn, JE, Hocart, CH 2002Towards the mechanism of cellulose synthesisTrends Plant Sci7461467PubMedCrossRefGoogle Scholar
  51. Wood, PJ 1980Specificity in the interaction of direct dyes with polysaccharidesCarbohydr Res85271287CrossRefGoogle Scholar
  52. Wood, TM, Bhat, KM 1988Methods for measuring cellulase activitiesWood, WAKellogg, SC eds. Biomass, part A: cellulose and hemicelluloseAcademic PressLondon87112CrossRefGoogle Scholar
  53. Wu, L, Joshi, CP, Chiang, VL 2000A xylem-specific cellulose synthase gene from aspen (Populus tremuloides) is responsive to mechanical stressPlant J22495502PubMedCrossRefGoogle Scholar
  54. Zabotin, AI, Barysheva, TS, Trofimova, OI, Lozovaya, VV, Widholm, J 2002Regulation of callose metabolism in higher plant cells in vitroRuss J Plant Physiol49792798CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Anna B. Ohlsson
    • 1
  • Soraya Djerbi
    • 1
  • Anders Winzell
    • 1
  • Laurence Bessueille
    • 2
  • Veronika Ståldal
    • 1
  • Xinguo Li
    • 1
  • Kristina Blomqvist
    • 1
  • Vincent Bulone
    • 2
  • Tuula T. Teeri
    • 1
  • Torkel Berglund
    • 1
    Email author
  1. 1.School of Biotechnology, Royal Institute of TechnologyAlbaNova University CentreStockholm
  2. 2.Equipe Organisation et Dynamique des Membranes Biologiques, Unité Mixte de Recherche 5013 du Centre National de la Recherche Scientifique, University of LyonVilleurbanne

Personalised recommendations