, 227:129 | Cite as

Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803

  • Michelle Liberton
  • R. Howard Berg
  • John Heuser
  • Robin Roth
  • Himadri B. PakrasiEmail author


Among prokaryotes, cyanobacteria are unique in having highly differentiated internal membrane systems. Like other Gram-negative bacteria, cyanobacteria such as Synechocystis sp. strain PCC 6803 have a cell envelope consisting of a plasma membrane, peptidoglycan layer, and outer membrane. In addition, these organisms have an internal system of thylakoid membranes where the electron transfer reactions of photosynthesis and respiration occur. A long-standing controversy concerning the cellular ultrastructures of these organisms has been whether the thylakoid membranes exist inside the cell as separate compartments, or if they have physical continuity with the plasma membrane. Advances in cellular preservation protocols as well as in image acquisition and manipulation techniques have facilitated a new examination of this topic. We have used a combination of electron microscopy techniques, including freeze-etched as well as freeze-substituted preparations, in conjunction with computer-aided image processing to generate highly detailed images of the membrane systems in Synechocystis cells. We show that the thylakoid membranes are in fact physically discontinuous from the plasma membrane in this cyanobacterium. Thylakoid membranes in Synechocystis sp. strain PCC 6803 thus represent bona fide intracellular organelles, the first example of such compartments in prokaryotic cells.

Keywords: Cyanobacteria; Synechocystis sp.; Plasma membrane; Thylakoid membrane. 

Supplementary material


  1. Allen, MM 1968Simple conditions for growth of unicellular blue-green algae on platesJ Phycol414Google Scholar
  2. Allen, MM 1984Cyanobacterial cell inclusionsAnnu Rev Microbiol38125CrossRefPubMedGoogle Scholar
  3. Anderson, LK, Toole, CM 1998A model for early events in the assembly pathway of cyanobacterial phycobilisomesMol Microbiol30467474CrossRefPubMedGoogle Scholar
  4. Ashby, MK, Houmard, J, Mullineaux, CW 2002The ycf27 genes from cyanobacteria and eukaryotic algae: distribution and implications for chloroplast evolutionFEMS Microbiol Lett2142530PubMedGoogle Scholar
  5. Beveridge, TJ, Graham, LL 1991Surface layers of bacteriaMicrobiol Rev55684705PubMedGoogle Scholar
  6. Crevel, G, Laine, B, Sautiere, P, Galleron, C 1989Isolation and characterization of DNA-binding proteins from the cyanobacterium Synechococcus sp. PCC 7002 (Agmenellum quadruplicatum) and from spinach chloroplastsBiochim Biophys Acta10073643PubMedGoogle Scholar
  7. Gantt, E 1994Supramolecular membrane organizationBryant, DA eds. The molecular biology of cyanobacteriaKluwerDordrecht119138Google Scholar
  8. Gilkey, JC, Staehelin, LA 1986Advances in ultrarapid freezing for the preservation of cellular ultrastructureJ Electron Microsc Tech3177210CrossRefGoogle Scholar
  9. Heuser, JE 1989Development of the quick-freeze, deep-etch, rotary-replication technique of sample preparation for 3-D electron microscopyProg Clin Biol Res2957183PubMedGoogle Scholar
  10. Heuser, JE, Keen, J 1988Deep-etch visualization of proteins involved in clathrin assemblyJ Cell Biol107877886CrossRefPubMedGoogle Scholar
  11. Hoiczyk, E, Hansel, A 2000Cyanobacterial cell walls: news from an unusual prokaryotic envelopeJ Bacteriol18211911199CrossRefPubMedGoogle Scholar
  12. Kashino, Y, Lauber, WM, Carroll, JA, Wang, Q, Whitmarsh, J, Satoh, K, Pakrasi, HB 2002Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptidesBiochemistry4180048012CrossRefPubMedGoogle Scholar
  13. Keren, N, Liberton, M, Pakrasi, HB 2005Photochemical competence of assembled photosystem II core complex in cyanobacterial plasma membraneJ Biol Chem28065486553CrossRefPubMedGoogle Scholar
  14. Kroll, D, Meierhoff, K, Bechtold, N, Kinoshita, M, Westphal, S, Vothknecht, UC, Soll, J, Westhoff, P 2001VIPP1, a nuclear gene of Arabidopsis thaliana essential for thylakoid membrane formationProc Natl Acad Sci USA9842384242CrossRefPubMedGoogle Scholar
  15. Li, H, Sherman, DM, Bao, S, Sherman, LA 2001Pattern of cyanophycin accumulation in nitrogen-fixing and non-nitrogen-fixing cyanobacteriaArch Microbiol176918CrossRefPubMedGoogle Scholar
  16. McCarren, J, Heuser, J, Roth, R, Yamada, N, Martone, M, Brahamsha, B 2005Inactivation of swmA results in the loss of an outer cell layer in a swimming synechococcus strainJ Bacteriol187224230CrossRefPubMedGoogle Scholar
  17. Mullineaux, CW 1999The thylakoid membranes of cyanobacteria: structure, dynamics and functionAust J Plant Physiol26671677CrossRefGoogle Scholar
  18. Mullineaux, CW, Sarcina, M 2002Probing the dynamics of photosynthetic membranes with fluorescence recovery after photobleachingTrends Plant Sci7237240CrossRefPubMedGoogle Scholar
  19. Nierzwicki-Bauer, SA, Balkwill, DL, Stevens, SE,Jr 1983aThree-dimensional ultrastructure of a unicellular cyanobacteriumJ Cell Biol97713722CrossRefGoogle Scholar
  20. Nierzwicki-Bauer, SA, Balkwill, DL, Stevens, SE,Jr 1983bUse of a computer-aided reconstruction system to examine the three-dimensional architecture of cyanobacteriaJ Ultrastruct Res847382CrossRefGoogle Scholar
  21. Oelze, J, Drews, G 1972Membranes of photosynthetic bacteriaBiochim Biophys Acta265209239PubMedGoogle Scholar
  22. Roose, JL, Pakrasi, HB 2004Evidence that D1 processing is required for manganese binding and extrinsic protein assembly into photosystem IIJ Biol Chem2794541745422CrossRefPubMedGoogle Scholar
  23. Sherman, DM, Troyan, TA, Sherman, LA 1994Localization of membrane proteins in the cyanobacterium Synechococcus sp. PCC7942: radial asymmetry in the photosynthetic complexesPlant Physiol106251262PubMedGoogle Scholar
  24. Smarda, J, Smajs, D, Komrska, J, Krzyzanek, V 2002S-layers on cell walls of cyanobacteriaMicron33257277CrossRefPubMedGoogle Scholar
  25. Spence, E, Sarcina, M, Ray, N, Moller, SG, Mullineaux, CW, Robinson, C 2003Membrane-specific targeting of green fluorescent protein by the Tat pathway in the cyanobacterium Synechocystis PCC6803Mol Microbiol4814811489CrossRefPubMedGoogle Scholar
  26. Ting, CS, Rocap, G, King, J, Chisholm, SW 2002Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategiesTrends Microbiol10134142CrossRefPubMedGoogle Scholar
  27. Westphal, S, Soll, J, Vothknecht, UC 2003Evolution of chloroplast vesicle transportPlant Cell Physiol44217222CrossRefPubMedGoogle Scholar
  28. Zak, E, Norling, B, Maitra, R, Huang, F, Andersson, B, Pakrasi, HB 2001The initial steps of biogenesis of cyanobacterial photosystems occur in plasma membranesProc Natl Acad Sci USA981344313448CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Michelle Liberton
    • 1
  • R. Howard Berg
    • 2
  • John Heuser
    • 3
  • Robin Roth
    • 3
  • Himadri B. Pakrasi
    • 1
    Email author
  1. 1.Department of BiologyWashington UniversitySt. LouisMissouri
  2. 2.Donald Danforth Plant Science CenterSt. LouisMissouri
  3. 3.Department of Cell Biology and PhysiologyWashington UniversitySt. LouisMissouri

Personalised recommendations