, Volume 227, Issue 2–4, pp 113–118

Chromosome endoreduplication as a factor of salt adaptation in Sorghum bicolor

  • M. Ceccarelli
  • E. Santantonio
  • F. Marmottini
  • G. N. Amzallag
  • P. G. Cionini


Nuclear DNA amounts were measured by Feulgen cytophotometry in Sorghum bicolor cv. 610 plants early exposed to 150 mM NaCl, a treatment known to induce an increased tolerance to salinity in plants carrying this genotype. In salt-treated plants, the percentages of 8C, 16C, and 32C nuclei in roots in the primary state of growth were 21.9%, 13.3%, and 4.3%, respectively. By contrast, in nonsalinized plants, only 3.5% of the nuclei had an 8C content and no higher DNA contents were observed. The salt treatment induced chromosome endoreduplication during the differentiation of cells in the root cortex, where 41.2% of the cells displayed a DNA content higher than 4C (versus 1.3% in control plants). No enhancement of endopolyploidy was observed in cells of the root vascular cylinder or the leaves of the salt-treated plants. In another S. bicolor genotype (DK 34-Alabama), noncompetent for salt adaptation, the same NaCl treatment did not induce chromosome endoreduplication in root cortex cells. Endopolyploidy may be considered as a part of the adaptive response of S. bicolor competent genotypes to salinity.

Keywords: Chromosome endoreduplication; Feulgen cytophotometry; Root cortex cell; Salt adaptation; Sorghum bicolor


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amzallag, GN 1996Transmissible reproductive changes following physiological adaptation to salinity in Sorghum bicolorNew Phytol132317332CrossRefGoogle Scholar
  2. Amzallag, GN 1998Induced modifications in reproductive traits of salt-treated plants of Sorghum bicolorIsrael J Plant Sci4618Google Scholar
  3. Amzallag, GN 1999Individuation in Sorghum bicolor: a self-organized process involved in physiological adaptation to salinityPlant Cell Environ2213891399CrossRefGoogle Scholar
  4. Amzallag, GN, Lerner, HR 1994Adaptation versus pre-existing resistance: an intergenotype analysis of the response of Sorghum bicolor to salinityIsrael J Plant Sci42125141Google Scholar
  5. Amzallag, GN, Lerner, HR, Poljakoff-Mayber, A 1990Induction of increased salt tolerance in Sorghum bicolor by NaCl pretreatmentJ Exp Bot412934Google Scholar
  6. Amzallag, GN, Seligman, H, Lerner, HR 1993A developmental window for salt-adaptation in Sorghum bicolorJ Exp Bot44645652Google Scholar
  7. Amzallag, GN, Nachmiasa, A, Lerner, HR 1998Influence of the mode of salinization on the reproductive traits of the field-grown progeny in Sorghum bicolorIsrael J Plant Sci46916Google Scholar
  8. Bhaskaran, S, Smith, RH, Schertz, K 1983Sodium chloride tolerant callus of Sorghum bicolorZ Pflanzenphysiol112459463Google Scholar
  9. Catarino, FM 1965Salt water, a growth inhibitor causing endopolyploidyPort Acta Biol Ser A9131152Google Scholar
  10. Catarino, FM 1968Endopoliploidia e differenciacao. Inducao experimental de endopoliploidia em Lobularia maritima e Bryophyllum crenatumPort Acta Biol Ser A111218Google Scholar
  11. Cavallini, A, Natali, L, Giordani, T, Durante, M, Cionini, PG 1996Nuclear DNA changes within Helianthus annuus L.: variation in the amount and methylation of repetitive DNA within homozygous progeniesTheor Appl Genet92285291CrossRefGoogle Scholar
  12. Ceccarelli, M, Giordani, T, Natali, L, Cavallini, A, Cionini, PG 1997Genome plasticity during seed germination in Festuca arundinaceaTheor Appl Genet94309315CrossRefGoogle Scholar
  13. Ceccarelli, M, Esposto, MC, Roscini, C, Frediani, M, Gelati, MT, Cavallini, A, Giordani, T, Pellegrino, RM, Cionini, PG 2002Genome plasticity in Festuca arundinacea: direct response to temperature changes by redundancy modulation of interspersed DNA repeatsTheor Appl Genet104901907CrossRefPubMedGoogle Scholar
  14. Cionini, PG 2004Genome plasticity as a factor of environmental adaptation in plant speciesRecent Res Dev Genet Breeding1259268Google Scholar
  15. Cullis, CA 1999

    The environment as an active generator of adaptive genomic variation

    Lerner, HR eds. Plant responses to environmental stressesMarcel DekkerNew York129160
    Google Scholar
  16. D’Amato F (1965) Endopolyploidy as a factor in plant tissue development. In: White PR, Grove AR (eds) Proceedings of the International Conference on Plant Tissue Culture. Berkeley, pp 449–462Google Scholar
  17. Koyro, HW 1997Ultrastructural and physiological changes in root cells of Sorghum plants induced by NaClJ Exp Bot48693706Google Scholar
  18. Koyro, HW 2002

    Ultrastructural effects of salinity in higher plants

    Läuchli, ALüttge, U eds. Salinity: environment, plants, moleculesKluwerDordrecht139157
    Google Scholar
  19. Kramer, D 1983The possible role of transfer cells in the adaptation of plants to salinityPhysiol Plant58549555CrossRefGoogle Scholar
  20. Mansour, MMF, Salama, KHA, Al-Mutawa, MM 2003Transport proteins and salt tolerance in plantsPlant Sci164891900CrossRefGoogle Scholar
  21. Meyer, G, Schnitt, JM, Bohnert, HJ 1990Direct screening of a small genome: estimation of the magnitude of plant gene expression changes during adaptation to high saltMol Gen Genet224347356CrossRefPubMedGoogle Scholar
  22. Natali, L, Giordani, T, Cionini, G, Pugliesi, C, Fambrini, M, Cavallini, A 1995Heterochromatin and repetitive DNA frequency variation in regenerated plants of Helianthus annuus L.Theor Appl Genet91395400CrossRefGoogle Scholar
  23. Peschke, VM, Phillips, RL 1992Genetic implications of somaclonal variation in plantsAdv Genet304175CrossRefGoogle Scholar
  24. Pikaard, CS 2001Genomic changes and gene silencing in polyploidsTrends Genet17675677CrossRefPubMedGoogle Scholar
  25. Price, HJ, Johnston, JS 1996Influence of light on DNA content of Helianthus annuus LinnaeusProc Natl Acad Sci USA931126411267CrossRefPubMedGoogle Scholar
  26. Soltis, PS, Soltis, DE 2000The role of genetic and genomic attributes in the success of polyploidsProc Natl Acad Sci USA9770517057CrossRefPubMedGoogle Scholar
  27. Tester, M, Davenport, R 2003Na+ tolerance and Na+ transport in higher plantsAnn Bot91503527CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • M. Ceccarelli
    • 1
  • E. Santantonio
    • 1
  • F. Marmottini
    • 2
  • G. N. Amzallag
    • 3
  • P. G. Cionini
    • 1
  1. 1.Dipartimento di Biologia Cellulare e AmbientaleUniversità di PerugiaPerugia
  2. 2.Dipartimento di Ingegneria CivileUniversità di PerugiaPerugia
  3. 3.Judea Center for Research and DevelopmentCarmel

Personalised recommendations