Advertisement

Protoplasma

, Volume 227, Issue 1, pp 17–24 | Cite as

Root-to-shoot signalling: apoplastic alkalinization, a general stress response and defence factor in barley (Hordeum vulgare)

  • H. H. Felle
  • A. Herrmann
  • R. Hückelhoven
  • K.-H. Kogel
Article

Summary.

We used a noninvasive microprobe technique to record in substomatal cavities of barley leaves the apoplastic pH response to different stress situations. When K+ (or Na+) activity at the roots of intact plants was increased from 1 to 50 mM, the leaf apoplastic pH increased by 0.4 to 0.6 units within 8 to 12 min when stomata were open, and within 15 to 20 min when stomata were closed. This reaction was accompanied by a correlative increase in K+ activity. Addition of 1 µM abscisic acid caused an apoplastic alkalinization of 0.5 to 0.8 units, and low temperatures (4 °C) increased pH by 0.2 to 0.3 units. Addition of 100 mM sorbitol or pH changes in the range 4.0 to 7.9 had no effect, ruling out that osmotic potential and/or pH is the carried signal. On detached leaves, the same treatments yielded qualitatively similar results, suggesting that the xylem is the most likely signal path. Following the attack of powdery mildew, the apoplastic pH of barley leaves substantially increases. We demonstrate that in susceptible barley, pretreatment (soil drench) with the resistance-inducing chemical benzo- (1,2,3)thiadiazole-7-carbothioic acid S-methyl ester markedly enhances this pH response. This is consistent with previous finding that apoplastic alkalinization is related to the degree of resistance towards this fungus.

Key words: Abscisic acid; Apoplast; Hordeum vulgare; Defence; pH; Resistance; Stress. 

Abbreviations

ABA

abscisic acid

BTH

benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beßer, K, Jarosch, B, Langen, G, Kogel, K-H 2000Expression analysis of genes induced in barley after chemical activation reveals distinct disease resistance pathways.Mol Plant Pathol1277286Google Scholar
  2. Carden, DE, Felle, HH 2003The mode of action of cell wall-degrading enzymes and their interference with Nod factor signalling in Medicago sativa root hairs.Planta2169931002PubMedGoogle Scholar
  3. Esch, H, Hundeshagen, B, Schneider-Poetsch, HJ, Bothe, H 1994Demonstration of abscisic acid in spores and hyphae of the arbuscular-mycorrizal fungus Glomus and in the N2-fixing cyanobacterium Anabaena variabilis.Plant Sci99916CrossRefGoogle Scholar
  4. Felix, G, Grosskopf, DG, Regennass, M, Boller, T 1993Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state.Plant J4307316CrossRefGoogle Scholar
  5. Felle, HH 1989K+/H+-antiport in Riccia fluitans. An alternative to the plasma membrane H+ pump for short-term pH regulation?Plant Sci61915CrossRefGoogle Scholar
  6. – Hanstein S (2002) The apoplastic pH of the substomatal cavity of Vicia faba leaves and its regulation responding to different stress factors. J Exp Bot 53: 73–82Google Scholar
  7. – Kondorosi É, Kondorosi Á, Schultze M (1998) The role of ion fluxes in Nod factor signalling in Medicago sativa. Plant J 13: 455–463Google Scholar
  8. – Hanstein S, Steinmeyer R, Hedrich R (2000) Dynamics of ionic activities in the apoplast of the substomatal cavity of intact Vicia faba leaves during stomatal closure evoked by ABA and darkness. Plant J 24: 297–304Google Scholar
  9. – Herrmann A, Hanstein S, Hückelhoven R, Kogel K-H (2004) Apoplastic signaling in barley leaves attacked by the powdery mildew fungus Blumeria graminis f. sp. hordei. Mol Plant Microbe Interact 17: 118–123Google Scholar
  10. Gerendás, J, Schurr, U 1999Physicochemical aspects of ion relations and pH regulation in plants – a quantitative approach.J Exp Bot5011011114Google Scholar
  11. Gollan, T, Schurr, U, Schultze, E-D 1992Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. I. The concentration of cations, anions, amino acids and pH of the xylem sap.Plant Cell Environ15551559Google Scholar
  12. Grignon, C, Sentenac, H 1991pH and ionic conditions in the apoplast.Annu Rev Plant Physiol42103128Google Scholar
  13. Hanstein, S, Felle, HH 1999The influence of atmospheric NH3 on the apoplastic pH of green leaves: a non-invasive approach with pH-sensitive microelectrodes.New Phytol143333338CrossRefGoogle Scholar
  14. – – (2002) CO2-triggered chloride release from guard cells in intact fava bean leaves: kinetics of the onset of stomatal closure. Plant Physiol 130: 940–950Google Scholar
  15. Hartung, W, Radin, JW 1989Abscisic acid in the mesophyll apoplast and in the root xylem sap of water stressed plants: the significance of pH gradients.Curr Top Plant Biochem Physiol8110124Google Scholar
  16. – Slovik S (1991) Physicochemical properties of plant growth regulators and plant tissues determine their distribution and re-distribution: stomatal regulation by abscisic acid in leaves. New Phytol 119: 361–382Google Scholar
  17. – Radin JW, Hendrix DL (1988) Abscisic acid movement into the apoplastic solution of water stressed cotton leaves: role of apoplastic pH. Plant Physiol 86: 908–913Google Scholar
  18. Hedrich, R, Neimanis, S, Savchenko, G, Felle, HH, Kaiser, WM, Heber, U 2001Changes in apoplastic pH and membrane potential in leaves in relation to stomatal responses to CO2, malate, abscisic acid or interruption of water supply.Planta213594601PubMedCrossRefGoogle Scholar
  19. Ichimura, K, Mizoguchi, T, Yoshida, R, Yuasa, T, Shinozaki, K 2000Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6.Plant J24655665PubMedCrossRefGoogle Scholar
  20. Ishitani, M, Liu, J, Halfter, U, Kim, CS, Wei, M, Zhu, JK 2000SOS3 function in plant salt tolerance requires myristoylation and calcium binding.Plant Cell1216671677PubMedCrossRefGoogle Scholar
  21. Knight, H, Trewavas, AJ, Knight, MR 1997Calcium signalling in Arabidopsis thaliana responding to drought and salinity.Plant J1210671078PubMedCrossRefGoogle Scholar
  22. Krauß, A 1969Einfluß der Ernährung der Pflanzen mit Mineralstoffen auf den Befall mit parasitären Krankheiten und Schädlingen.Z Pflanzenernähr Bodenkd124129147Google Scholar
  23. McAinsh, MR, Brownlee, C, Hetherington, AM 1992Visualizing changes in cytosolic free Ca2+ during the response of stomatal guard cells to abscisic acid.Plant Cell411131122PubMedCrossRefGoogle Scholar
  24. Mikolajczyk, M, Awotunde, OS, Muszynska, G, Klessig, DF, Dobrowolska, G 2000Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homologue of protein kinase ASK1 in tobacco cells.Plant Cell12165178PubMedCrossRefGoogle Scholar
  25. Munnik, T, Ligterink, W, Meskiene, I, Calderini, O, Beverly, J, Musgrave, A, Hirt, H 1999Distinct osmo-sensing protein kinase pathways are involved in signalling moderate and severe hyper-osmotic stress.Plant J20381388PubMedCrossRefGoogle Scholar
  26. Oostendorp, M, Kunz, W, Dietrich, B, Staub, T 2001Induced disease resistance in plants by chemicals.Eur J Plant Pathol1071928CrossRefGoogle Scholar
  27. Raschke, K 1975Stomatal action.Annu Rev Plant Physiol26309340CrossRefGoogle Scholar
  28. Shi, H, Ishitani, M, Kim, C, Zhu, JK 2000The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter.Proc Natl Acad Sci USA9768966901PubMedGoogle Scholar
  29. Shinozaki, K, Yamaguchi-Shinozaki, K 1997Gene expression and signal transduction in water-stress response.Plant Physiol115327334PubMedCrossRefGoogle Scholar
  30. Stewart, PA 1983Modern quantitative acid-base chemistry.Can J Physiol Pharmacol6114441461PubMedGoogle Scholar
  31. Tetlow, IJ, Farrar, JF 1993Apoplastic sugar concentration and pH in barley leaves infected with brown rust.J Exp Bot44929936Google Scholar
  32. Ullrich, CI, Novacki, AJ 1990Extra- and intracellular pH and membrane potential changes induced by K+, Cl, H2PO4 , and NO3 uptake and fusicoccin in root hairs of Limnobium stoloniferum.Plant Physiol9415611567CrossRefPubMedGoogle Scholar
  33. – – (1992) Recent aspects of ion-induced pH changes. Curr Top Plant Biochem Physiol 11: 231–248Google Scholar
  34. Wiberg, A 1974Genetical studies of spontaneous sources of resistance to powdery mildew in barley.Hereditas7789148PubMedGoogle Scholar
  35. Wiese, J, Bagy, MMK, Schubert, S 2003Soil properties, but not plant nutrients (N, P, K) interact with chemically induced resistance against powdery mildew in barley.J Plant Nutr Soil Sci166379384CrossRefGoogle Scholar
  36. – Kranz T, Schubert S (2004) Induction of pathogen resistance in barley by abiotic stress. Plant Biol 6: 529–536Google Scholar
  37. Wilkinson, S 1999pH as a stress signal.Plant Growth Regul298799CrossRefGoogle Scholar
  38. – Davies WJ (1997) Xylem sap pH increase: a drought signal received at the apoplastic face of the guard cell that involves the suppression of saturable abscisic acid uptake by the epidermal symplast. Plant Physiol. 113: 559–573Google Scholar
  39. Zhu, J-K 2001Cell signaling under salt, water and cold stresses.Curr Opin Plant Biol4401406PubMedCrossRefGoogle Scholar
  40. – (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53: 247–273Google Scholar

Copyright information

© Springer-Verlag/Wien 2005

Authors and Affiliations

  • H. H. Felle
    • 1
  • A. Herrmann
    • 1
  • R. Hückelhoven
    • 2
  • K.-H. Kogel
    • 2
  1. 1.Botanisches Institut I, Justus-Liebig-UniversitätGießen
  2. 2.Interdisziplinäres Forschungszentrum für Umweltsicherung, Institut für Phytopathologie und Angewandte ZoologieJustus-Liebig-UniversitätGießen

Personalised recommendations