Advertisement

Protoplasma

, Volume 226, Issue 1–2, pp 39–54 | Cite as

Endocytosis and vesicle trafficking during tip growth of root hairs

  • M. Ovečka
  • I. Lang
  • F. Baluška
  • A. Ismail
  • P. Illeš
  • I. K. Lichtscheidl
Article

Summary.

The directional elongation of root hairs, “tip growth”, depends on the coordinated and highly regulated trafficking of vesicles which fill the tip cytoplasm and are active in secretion of cell wall material. So far, little is known about the dynamics of endocytosis in living root hairs. We analyzed the motile behaviour of vesicles in the apical region of living root hairs of Arabidopsis thaliana and of Triticum aestivum by live cell microscopy. For direct observation of endocytosis and of the fate of endocytic vesicles, we used the fluorescent endocytosis marker dyes FM 1-43 and FM 4-64. Rapid endocytosis was detected mainly in the tip, where it caused a bright fluorescence of the apical cytoplasm. The internalized membranes proceeded through highly dynamic putative early endosomes in the clear zone to larger endosomal compartments in the subapical region that are excluded from the clear zone. The internalized cargo ended up in the dynamic vacuole by fusion of large endosomal compartments with the tonoplast. Before export to these lytic compartments, putative early endosomes remained in the apical zone, where they most probably recycled to the plasma membrane and back into the cytoplasm for more than 30 min. Endoplasmic reticulum was not involved in trafficking pathways of endosomes. Actin cytoskeleton was needed for the endocytosis itself, as well as for further membrane trafficking. The actin-depolymerizing drug latrunculin B modified the dynamic properties of vesicles and endosomes; they became immobilized and aggregated in the tip. Treatment with brefeldin A inhibited membrane trafficking and caused the disappearance of FM-containing vesicles and putative early endosomes from the clear zone; labelled structures accumulated in motile brefeldin A-induced compartments. These large endocytic compartments redispersed upon removal of the drug. Our results hence prove that endocytosis occurs in growing root hairs. We show the localization of endocytosis in the tip and indicate specific endomembrane compartments and their recycling.

Key words: Actin cytoskeleton; Arabidopsis thaliana; Brefeldin A; Endocytic pathway; Endosome; Triticum aestivum

Abbreviations

BFA

brefeldin A

ER

endoplasmic reticulum

F-actin

filamentous actin

MVBs

multivesicular bodies

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baluška, F, Salaj, J, Mathur, J, Braun, M, Jasper, F, Šamaj, J, Chua, N-H, Barlow, PW, Volkmann, D 2000Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-enriched F-actin meshworks accumulated within outgrowing bulges.Dev Biol227618632PubMedGoogle Scholar
  2. – Jásik J, Edelmann HG, Salajová T, Volkmann D (2001) Latrunculin B-induced plant dwarfism: plant cell elongation is actin-dependent. Dev Biol 231: 113–124Google Scholar
  3. – Hlavačka A, Šamaj J, Palme K, Robinson DG, Matoh T, McCurdy DW, Menzel D, Volkmann D (2002) F-actin-dependent endocytosis of cell wall pectins in meristematic root cells: insights from brefeldin A-induced compartments. Plant Physiol 130: 422–431Google Scholar
  4. – Šamaj J, Hlavačka A, Kendrick-Jones J, Volkmann D (2004) Myosin VIII and F-actin enriched plasmodesmata in maize root inner cortex cells accomplish fluid-phase endocytosis via an actomyosin-dependent process. J Exp Bot 55: 463–473Google Scholar
  5. Betz, WJ, Mao, F, Smith, CB 1996Imaging exocytosis and endocytosis.Curr Opin Neurobiol6365371CrossRefPubMedGoogle Scholar
  6. Blackbourn, HD, Jackson, AP 1996Plant clathrin heavy chain: sequence analysis and restricted localisation in growing pollen tubes.J Cell Sci109777786PubMedGoogle Scholar
  7. Bolte, S, Talbot, C, Boutte, Y, Catrice, C, Read, ND, Satiat-Jeunemaitre, B 2004FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells.J Microsc214159173CrossRefPubMedGoogle Scholar
  8. Bonnett, HT, Newcomb, EH 1966Coated vesicles and other cytoplasmic components of growing root hairs of radish.Protoplasma625975CrossRefGoogle Scholar
  9. Camacho, L, Malhó, R 2003Endo/exocytosis in the pollen tube apex is differentially regulated by Ca2+ and GTPases.J Exp Bot548392CrossRefPubMedGoogle Scholar
  10. Čiamporová, M, Dekánková, K, Hanáčková, Z, Peters, P, Ovečka, M, Baluška, F 2003Structural aspects of bulge formation during root hair initiation.Plant Soil25517Google Scholar
  11. Derksen, J, Rutten, T, Lichtscheidl, IK, Dewin, AHN, Pierson, ES, Rongen, G 1995Quantitative analysis of the distribution of organelles in tobacco pollen tubes: implications for exocytosis and endocytosis.Protoplasma188267276CrossRefGoogle Scholar
  12. De Ruiter NCA, Esseling JJ, Emons AMC (2001) The roles of calcium and the actin cytoskeleton in regulation of root hair tip growth by rhizobial signal molecules. In: Geitmann A, Cresti M, Heath IB (eds) Cell biology of plant and fungal tip growth. IOS Press, Amsterdam, pp 55–67 (NATO science series, series I, vol 328)Google Scholar
  13. Emans, N, Zimmermann, S, Fischer, R 2002Uptake of a fluorescent marker in plant cells is sensitive to brefeldin A and wortmannin.Plant Cell147186CrossRefPubMedGoogle Scholar
  14. Emons, AMC 1987The cytoskeleton and secretory vesicles in root hairs of Equisetum and Limnobium and cytoplasmic streaming in root hairs of Equisetum.Ann Bot60625632Google Scholar
  15. – Traas JA (1986) Coated pits and coated vesicles on the plasma membrane of plant cells. Eur J Cell Biol 41: 57–64Google Scholar
  16. Esseling JJ, de Ruijter NCA, Emons AMC (2000) The root hair actin cytoskeleton as backbone, highway, morphogenetic instrument and target for signalling. In: Ridge RW, Emons AMC (eds) Root hairs: cell and molecular biology. Springer, Tokyo, pp 29–52Google Scholar
  17. Fischer-Parton, S, Parton, RM, Hickey, P, Dijksterhuis, J, Atkinson, HA, Read, ND 2000Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae.J Microsc198246259CrossRefPubMedGoogle Scholar
  18. Foissner, I, Lichtscheidl, IK, Wasteneys, GO 1996Actin-based vesicle dynamics and exocytosis during wound wall formation in Characean internodal cells.Cell Motil Cytoskeleton353548CrossRefPubMedGoogle Scholar
  19. Galway ME (2000) Root hair ultrastructure and tip growth. In: Ridge RW, Emons AMC (eds) Root hairs: cell and molecular biology. Springer, Tokyo, pp 1–17Google Scholar
  20. – Heckman JW, Schiefelbein JW (1997) Growth and ultrastructure of Arabidopsis root hairs: the rhd3 mutation alters vacuole enlargement and tip growth. Planta 201: 209–218Google Scholar
  21. – Lane DC, Schiefelbein JW (1999) Defective control of growth rate and cell diameter in tip-growing root hairs of the rhd4 mutant of Arabidopsis thaliana. Can J Bot 77: 494–507Google Scholar
  22. Geldner, N 2004The plant endosomal system: its structure and role in signal transduction and plant development.Planta209547560Google Scholar
  23. – Friml J, Stierhof Y-D, Jürgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413: 425–428Google Scholar
  24. – Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112: 219–230Google Scholar
  25. Gibbon, BC, Kovar, DR, Staiger, CJ 1999Latrunculin B has different effects on pollen germination and tube growth.Plant Cell1123492363CrossRefPubMedGoogle Scholar
  26. Grebe, M, Friml, J, Swarup, R, Ljung, K, Sandberg, G, Terlou, M, Palme, K, Bennett, MJ, Scheres, B 2002Cell polarity signaling in Arabidopsis involves a BFA-sensitive auxin influx pathway.Curr Biol12329334CrossRefPubMedGoogle Scholar
  27. – Xu J, Mübius W, Ueda T, Nakano A, Geuze HJ, Rook MB, Scheres B (2003) Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr Biol 13: 1378–1387Google Scholar
  28. Hepler, PK, Vidali, L, Cheung, AY 2001Polarized cell growth in plants.Annu Rev Cell Dev Biol17159187CrossRefPubMedGoogle Scholar
  29. Hoffmann, J, Mendgen, K 1998Endocytosis and membrane turnover in the germ tube of Uromyces fabae.Fungal Genet Biol247785CrossRefPubMedGoogle Scholar
  30. Joachim, S, Robinson, DG 1984Endocytosis of cationic ferritin by bean leaf protoplasts.Eur J Cell Biol34212216PubMedGoogle Scholar
  31. Ketelaar, T, de Ruijter, NCA, Emons, AMC 2003Unstable F-actin specifies the area and microtubule direction of cell expansion in Arabidopsis root hairs.Plant Cell15285292CrossRefPubMedGoogle Scholar
  32. Kutsuna, N, Hasezawa, S 2002Dynamic organization of vacuolar and microtubule structures during cell cycle progression in synchronized tobacco BY-2 cells.Plant Cell Physiol43965973CrossRefPubMedGoogle Scholar
  33. – Kumagai F, Sato MH, Hasezawa S (2003) Three-dimensional reconstruction of tubular structure of vacuolar membrane throughout mitosis in living tobacco cells. Plant Cell Physiol 44: 1045–1054Google Scholar
  34. Lancelle, SA, Hepler, PK 1992Ultrastructure of freeze-substituted pollen tubes of Lilium longiflorum.Protoplasma167215230CrossRefGoogle Scholar
  35. – Cresti M, Hepler PK (1997) Growth inhibition and recovery in freeze-substituted Lilium longiflorum pollen tubes: structural effects of caffeine. Protoplasma 196: 21–33Google Scholar
  36. Lichtscheidl, IK, Foissner, I 1996Video microscopy of dynamic plant cell organelles: principles of the technique and practical application.J Microsc181117128Google Scholar
  37. – Url WG (1990) Organization and dynamics of cortical endoplasmic reticulum in inner epidermal cells of onion bulb scales. Protoplasma 157: 203–215Google Scholar
  38. Low, PS, Chandra, S 1994Endocytosis in plants.Annu Rev Plant Physiol Plant Mol Biol45609631CrossRefGoogle Scholar
  39. McNeil, M, Darvill, AG, Fry, SC, Albersheim, P 1984Structure and function of the primary cell walls of plants.Annu Rev Biochem53625663CrossRefPubMedGoogle Scholar
  40. Mukherjee, S, Soe, TT, Maxfield, FR 1999Endocytotic sorting of lipid analogues differing solely in the chemistry of their hydrophobic tails.J Cell Biol14412711284CrossRefPubMedGoogle Scholar
  41. Murashige, T, Skoog, F 1962A revised medium for rapid growth and bioassay with tobacco tissue cultures.Physiol Plant15473497Google Scholar
  42. Murphy, AS, Bandyopadhyay, A, Holstein, SE, Peer, WA 2005Endocytic cycling of PM proteins.Annu Rev Plant Biol56221251CrossRefPubMedGoogle Scholar
  43. Osterweil, E, Wells, DG, Mooseker, MS 2005A role for myosin VI in postsynaptic structure and glutamate receptor endocytosis.J Cell Biol168329338CrossRefPubMedGoogle Scholar
  44. Parton, RM, Fischer-Parton, S, Watahiki, MK, Trewawas, AJ 2001Dynamics of the apical vesicle accumulation and the rate of growth are related in individual pollen tubes.J Cell Sci11426852695PubMedGoogle Scholar
  45. – – Trewavas AJ, Watahiki MK (2003) Pollen tubes exhibit regular periodic membrane trafficking events in the absence of apical extension. J Cell Sci 116: 2707–2719Google Scholar
  46. Pesacreta, TJ, Lucas, WJ 1985Presence of a partially coated reticulum and a plasma membrane coat in angiosperms.Protoplasma125173184CrossRefGoogle Scholar
  47. Picton, JM, Steer, MW 1983Evidence for the role of Ca2+ ions in tip extension in pollen tubes.Protoplasma1151117CrossRefGoogle Scholar
  48. Quader, H, Schnepf, E 1986Endoplasmic reticulum and cytoplasmic streaming: fluorescence microscopical observations in adaxial epidermal cells of onion bulb scales.Protoplasma131250253CrossRefGoogle Scholar
  49. Ridge, RW 1988Freeze-substitution improves the ultrastructural preservation of legume root hairs.Bot Mag Tokyo101427441Google Scholar
  50. – (1995) Micro-vesicles, pyriform vesicles and macro-vesicles associated with the plasma membrane in the root hairs of Vicia hirsuta after freeze-substitution. J Plant Res 108: 362–368Google Scholar
  51. Robineau, S, Chabre, M, Antonny, B 2000Binding site of brefeldin A at the interface between small G protein ADP-ribosylation factor 1 (ARF1) and the nucleotide-exchange factor Sec7 domain.Proc Natl Acad Sci USA9799139918CrossRefPubMedGoogle Scholar
  52. Robinson, DG, Hinz, G, Holstein, SE 1998The molecular characterization of transport vesicles.Plant Mol Biol384976PubMedGoogle Scholar
  53. Roy, S, Jauh, GY, Hepler, PK, Lord, EM 1998Effect of Yariv phenylglycoside on cell wall assembly in the pollen tube.Planta204450458CrossRefPubMedGoogle Scholar
  54. – Holdaway-Clarke TL, Hackett GR, Kunkel JG, Lord EM, Hepler PK (1999) Uncoupling secretion and tip growth in lily pollen tubes: evidence for the role of calcium in exocytosis. Plant J 19: 379–386Google Scholar
  55. Satiat-Jeunemaitre, B, Hawes, C 1993The distribution of secretory products in plant cells is affected by brefeldin A.Cell Biol Int17183193CrossRefGoogle Scholar
  56. Sheahan, MB, Staiger, CJ, Rose, RJ, McCurdy, DW 2004A green fluorescent protein fusion to actin-binding domain 2 of Arabidopsis fimbrin highlights new features of a dynamic actin cytoskeleton in live plant cells.Plant Physiol13639683978CrossRefPubMedGoogle Scholar
  57. Sherrier, DJ, Van den Bosch, KA 1994Secretion of cell wall polysaccharides in Vicia root hairs.Plant J5185195CrossRefGoogle Scholar
  58. Schnepf, E 1986Cellular polarity.Annu Rev Plant Physiol372347CrossRefGoogle Scholar
  59. Sievers A, Schnepf E (1981) Morphogenesis and polarity of tubular cells with tip growth. In: Kiermayer O (ed) Cytomorphogenesis in plants. Springer, Wien New York, pp 265–299 (Cell biology monographs, vol 8)Google Scholar
  60. Steer, MW 1988Plasma membrane turnover in plant cells.J Exp Bot39987996Google Scholar
  61. Šamaj, J, Ovečka, M, Hlavačka, A, Lecourieux, F, Meskiene, I, Lichtscheidl, I, Lenart, P, Salaj, J, Volkmann, D, Bügre, L, Baluška, F, Hirt, H 2002Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip-growth.EMBO J2132963306PubMedGoogle Scholar
  62. – Baluška F, Voigt B, Schlicht M, Volkmann D, Menzel D (2004a) Endocytosis, actin cytoskeleton, and signaling. Plant Physiol 135: 1150–1161Google Scholar
  63. – – Menzel D (2004b) New signalling molecules regulating root hair tip growth. Trends Plant Sci 9: 217–220Google Scholar
  64. – – Hirt H (2004c) From signal to cell polarity: mitogen-activated protein kinases as sensors and effectors of cytoskeleton dynamicity. J Exp Bot 55: 189–198Google Scholar
  65. Tanchak, MA, Fowke, LC 1987The morphology of multivesicular bodies in soybean protoplasts and their role in endocytosis.Protoplasma138173182CrossRefGoogle Scholar
  66. – Griffing LR, Mersey BG, Fowke LC (1984) Endocytosis of cationized ferritin by coated vesicles of soybean protoplasts. Planta 162: 481–486Google Scholar
  67. Thiel, G, Battey, N 1998Exocytosis in plants.Plant Mol Biol38111125CrossRefPubMedGoogle Scholar
  68. Toshima, J, Toshima, JY, Martin, AC, Drubin, DG 2005Phosphoregulation of Arp2/3-dependent actin assembly during receptor-mediated endocytosis.Nat Cell Biol7246254CrossRefPubMedGoogle Scholar
  69. Tse, YC, Mo, B, Hillmer, S, Zhao, M, Lo, SW, Robinson, DG, Jiang, L 2004Identification of multivesicular bodies as prevacuolar compartments in Nicotiana tabacum BY-2 cells.Plant Cell16672693CrossRefPubMedGoogle Scholar
  70. Ueda, T, Yamaguchi, M, Uchimiya, H, Nakano, A 2001Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana.EMBO J1747304741Google Scholar
  71. Uemura, T, Ueda, T, Ohniwa, RL, Nakano, A, Takeyasu, K, Sat, MH 2004Systematic analysis of SNARE molecules in Arabidoposis: dissection of the post-Golgi network in plant cells.Cell Struct Funct294965CrossRefPubMedGoogle Scholar
  72. Varner, JE, Lin, LS 1989Plant cell wall architecture.Cell56231239CrossRefPubMedGoogle Scholar
  73. Vida, TA, Emr, SD 1995A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast.J Cell Biol128779792CrossRefPubMedGoogle Scholar
  74. Vidali, L, Hepler, PK 2001Actin and pollen tube growth.Protoplasma2156476CrossRefPubMedGoogle Scholar
  75. – McKenna ST, Hepler PK (2001) Actin polymerization is essential for pollen tube growth. Mol Biol Cell 12: 2534–2545Google Scholar
  76. Voigt, B, Timmers, A, Šamaj, J, Hlavacka, A, Ueda, T, Preuss, M, Nielsen, E, Mathur, J, Emans, N, Stenmark, H, Nakano, A, Baluška, F, Menzel, D 2005aActin-based motility of endosomes is linked to the polar tip growth of root hairs.Eur J Cell Biol84609621Google Scholar
  77. – – – Müller J, Baluška F, Menzel D (2005b) GFP-FABD2 fusion construct allows in vivo visualization of the dynamic actin cytoskeleton in all cells of Arabidopsis seedlings. Eur J Cell Biol 84: 595–608 Google Scholar
  78. Wang, Y-S, Motes, CM, Mohamalawari, DR, Blancaflor, EB 2004Green fluorescent protein fusions to Arabidopsis fimbrin 1 for spatio-temporal imaging of F-actin dynamics in roots.Cell Motil Cytoskeleton597993CrossRefPubMedGoogle Scholar
  79. Wymer, CL, Bibikova, TN, Gilroy, S 1997Cytoplasmic free calcium distributions during the development of root hairs of Arabidopsis thaliana.Plant J12427439PubMedGoogle Scholar
  80. Yarar, D, Waterman-Storer, CM, Schmid, SL 2005A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis.Mol Biol Cell16964975PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2005

Authors and Affiliations

  • M. Ovečka
    • 1
    • 2
  • I. Lang
    • 1
  • F. Baluška
    • 2
    • 3
  • A. Ismail
    • 1
  • P. Illeš
    • 2
  • I. K. Lichtscheidl
    • 1
  1. 1.Institution of Cell Imaging and Ultrastructure Research, University of ViennaVienna
  2. 2.Institute of Botany, Slovak Academy of SciencesBratislava
  3. 3.Institute of Cellular and Molecular Botany, University of BonnBonn

Personalised recommendations