Skip to main content
Log in

A numerical study of geometrical effects on solidification of a compound droplet on a cold flat surface

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this study, the solidification process of a compound droplet is numerically simulated by an axisymmetric front-tracking/finite difference technique. The compound droplet placed on a cold flat surface in a gas environment consists of an inner gas core surrounded by a concentric shell phase-change liquid that forms an outer droplet. The initial droplet shape assumed as a spherical cap is therefore determined by two wetting angles known as the inner wetting angle (ϕ0i for the inner core) and the outer wetting angle (ϕ0o for the outer droplet). During the solidification process, there is the presence of two three-junction points where a prescribed growth angle ε is specified. We analyze the solidification process undergoing the influence of the geometrical aspects of the compound droplet including the growth angle and the wetting angles. It is found that the outer wetting angle ϕ0o and the growth angle have a strong influence on the solidified droplet that the droplet height increases with an increase in ϕ0o or ε while the height increment decreases with an increase in ϕ0o or with a decrease in ε. On the contrary, changing the shape of the inner core, in terms of ϕ0i, does not affect the outer shape after complete solidification. The effects of these parameters on the solidification time are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. McClements, D.J.: Advances in fabrication of emulsions with enhanced functionality using structural design principles. Curr. Opin. Colloid Interface Sci. 17, 235–245 (2012). https://doi.org/10.1016/j.cocis.2012.06.002

    Article  Google Scholar 

  2. Maan, A.A., Schroën, K., Boom, R.: Spontaneous droplet formation techniques for monodisperse emulsions preparation – Perspectives for food applications. J. Food Eng. 107, 334–346 (2011). https://doi.org/10.1016/j.jfoodeng.2011.07.008

    Article  Google Scholar 

  3. Bhagat, K.D., Vu, T.V., Wells, J.C., Takakura, H., Kawano, Y., Ogawa, F.: Production of hollow germanium alloy quasi-spheres through a coaxial nozzle. Jpn. J. Appl. Phys. 58, 068001 (2019). https://doi.org/10.7567/1347-4065/ab1b59

    Article  Google Scholar 

  4. Dalili, N., Edrisy, A., Carriveau, R.: A review of surface engineering issues critical to wind turbine performance. Renew. Sustain. Energy Rev. 13, 428–438 (2009). https://doi.org/10.1016/j.rser.2007.11.009

    Article  Google Scholar 

  5. Vu, T.V., Takakura, H., Wells, J.C., Minemoto, T.: Production of hollow spheres of eutectic tin-lead solder through a coaxial nozzle. J. Solid Mech. Mater. Eng. 4, 1530–1538 (2010). https://doi.org/10.1299/jmmp.4.1530

    Article  Google Scholar 

  6. Hochart, C., Fortin, G., Perron, J., Ilinca, A.: Wind turbine performance under icing conditions. Wind Energy 11, 319–333 (2008). https://doi.org/10.1002/we.258

    Article  Google Scholar 

  7. Cao, Y., Wu, Z., Su, Y., Xu, Z.: Aircraft flight characteristics in icing conditions. Prog. Aerosp. Sci. 74, 62–80 (2015). https://doi.org/10.1016/j.paerosci.2014.12.001

    Article  Google Scholar 

  8. Huang, L., Liu, Z., Liu, Y., Gou, Y., Wang, L.: Effect of contact angle on water droplet freezing process on a cold flat surface. Exp. Therm. Fluid Sci. 40, 74–80 (2012). https://doi.org/10.1016/j.expthermflusci.2012.02.002

    Article  Google Scholar 

  9. Pan, Y., Shi, K., Duan, X., Naterer, G.F.: Experimental investigation of water droplet impact and freezing on micropatterned stainless steel surfaces with varying wettabilities. Int. J. Heat Mass Transf. 129, 953–964 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.032

    Article  Google Scholar 

  10. Zhang, H., Jin, Z., Jiao, M., Yang, Z.: Experimental investigation of the impact and freezing processes of a water droplet on different cold concave surfaces. Int. J. Therm. Sci. 132, 498–508 (2018). https://doi.org/10.1016/j.ijthermalsci.2018.06.032

    Article  Google Scholar 

  11. Zhang, X., Wu, X., Min, J.: Freezing and melting of a sessile water droplet on a horizontal cold plate. Exp. Therm. Fluid Sci. 88, 1–7 (2017). https://doi.org/10.1016/j.expthermflusci.2017.05.009

    Article  Google Scholar 

  12. Stiti, M., Castanet, G., Labergue, A., Lemoine, F.: Icing of a droplet deposited onto a subcooled surface. Int. J. Heat Mass Transf. 159, 120116 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120116

    Article  Google Scholar 

  13. Satunkin, G.A.: Determination of growth angles, wetting angles, interfacial tensions and capillary constant values of melts. J. Cryst. Growth. 255, 170–189 (2003). https://doi.org/10.1016/S0022-0248(03)01187-4

    Article  Google Scholar 

  14. Marin, A.G., Enriquez, O.R., Brunet, P., Colinet, P., Snoeijer, J.H.: Universality of tip singularity formation in freezing water drops. Phys. Rev. Lett. 113, 054301 (2014). https://doi.org/10.1103/PhysRevLett.113.054301

    Article  Google Scholar 

  15. Schultz, W.W., Worster, M.G., anderson, D.M.: Solidifying sessile water droplets. In: Interactive Dynamics of Convection and Solidification. pp. 209–226. Kluwer Academic Publishers (2001)

  16. Virozub, A., Rasin, I.G., Brandon, S.: Revisiting the constant growth angle: Estimation and verification via rigorous thermal modeling. J. Cryst. Growth. 310, 5416–5422 (2008). https://doi.org/10.1016/j.jcrysgro.2008.09.004

    Article  Google Scholar 

  17. Zhang, C., Zhang, H., Fang, W., Zhao, Y., Yang, C.: Axisymmetric lattice Boltzmann model for simulating the freezing process of a sessile water droplet with volume change. Phys. Rev. E. 101, 023314 (2020). https://doi.org/10.1103/PhysRevE.101.023314

    Article  Google Scholar 

  18. Vu, T.V., Tryggvason, G., Homma, S., Wells, J.C.: Numerical investigations of drop solidification on a cold plate in the presence of volume change. Int. J. Multiph. Flow. 76, 73–85 (2015). https://doi.org/10.1016/j.ijmultiphaseflow.2015.07.005

    Article  MathSciNet  Google Scholar 

  19. Shetabivash, H., Dolatabadi, A., Paraschivoiu, M.: A multiple level-set approach for modelling containerless freezing process. J. Comput. Phys. 109527 (2020). https://doi.org/10.1016/j.jcp.2020.109527

  20. Zhang, X., Liu, X., Wu, X., Min, J.: Simulation and experiment on supercooled sessile water droplet freezing with special attention to supercooling and volume expansion effects. Int. J. Heat Mass Transf. 127, 975–985 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.021

    Article  Google Scholar 

  21. Chen, H., Li, J., Shum, H.C., Stone, H.A., Weitz, D.A.: Breakup of double emulsions in constrictions. Soft Matter 7, 2345–2347 (2011). https://doi.org/10.1039/C0SM01100B

    Article  Google Scholar 

  22. Liu, X., Wang, C., Zhao, Y., Chen, Y.: Shear-driven two colliding motions of binary double emulsion droplets. Int. J. Heat Mass Transf. 121, 377–389 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.021

    Article  Google Scholar 

  23. Gao, P., Feng, J.J.: Spreading and breakup of a compound drop on a partially wetting substrate. J. Fluid Mech. 682, 415–433 (2011). https://doi.org/10.1017/jfm.2011.235

    Article  MATH  Google Scholar 

  24. Kan, H.-C., Udaykumar, H.S., Shyy, W., Tran-Son-Tay, R.: Hydrodynamics of a compound drop with application to leukocyte modeling. Phys. Fluids. 10, 760–774 (1998). https://doi.org/10.1063/1.869601

    Article  Google Scholar 

  25. Chen, Y., Liu, X., Zhang, C., Zhao, Y.: Enhancing and suppressing effects of an inner droplet on deformation of a double emulsion droplet under shear. Lab. Chip. 15, 1255–1261 (2015). https://doi.org/10.1039/C4LC01231C

    Article  Google Scholar 

  26. Wang, J., Liu, J., Han, J., Guan, J.: Effects of Complex Internal Structures on Rheology of Multiple Emulsions Particles in 2D from a Boundary Integral Method. Phys. Rev. Lett. 110, 066001 (2013). https://doi.org/10.1103/PhysRevLett.110.066001

    Article  Google Scholar 

  27. Chen, R.H., Kuo, M.J., Chiu, S.L., Pu, J.Y., Lin, T.H.: Impact of a compound drop on a dry surface. J. Mech. Sci. Technol. 21, 1886–1891 (2007). https://doi.org/10.1007/BF03177445

    Article  Google Scholar 

  28. Tasoglu, S., Kaynak, G., Szeri, A.J., Demirci, U., Muradoglu, M.: Impact of a compound droplet on a flat surface: A model for single cell epitaxy. Phys. Fluids. 22, 082103 (2010). https://doi.org/10.1063/1.3475527

    Article  Google Scholar 

  29. Zhu, S. (朱思琦), Kherbeche, A., Feng, Y. (冯玉萌), Thoraval, M.-J. (陶益壮): Impact of an air-in-liquid compound drop onto a liquid surface. Phys. Fluids. 32, 041705 (2020). https://doi.org/10.1063/5.0005702

  30. Vu, T.V., Pham, P.H.: Numerical study of a compound droplet moving toward a rigid wall in an axisymmetric channel. Int. J. Heat Fluid Flow. 82, 108542 (2020). https://doi.org/10.1016/j.ijheatfluidflow.2020.108542

    Article  Google Scholar 

  31. Liu, H.-R., Zhang, C.-Y., Gao, P., Lu, X.-Y., Ding, H.: On the maximal spreading of impacting compound drops. J. Fluid Mech. 854, (2018). https://doi.org/10.1017/jfm.2018.702

  32. Ho, N.X., Vu, T.V., Pham, B.D.: A numerical study of a liquid compound drop solidifying on a horizontal surface. Int. J. Heat Mass Transf. 165, 120713 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120713

    Article  Google Scholar 

  33. Abkarian, M., Faivre, M., Viallat, A.: Swinging of Red Blood Cells under Shear Flow. Phys. Rev. Lett. 98, 188302 (2007). https://doi.org/10.1103/PhysRevLett.98.188302

    Article  Google Scholar 

  34. Teh, S.-Y., Lin, R., Hung, L.-H., Lee, A.P.: Droplet microfluidics. Lab. Chip. 8, 198–220 (2008). https://doi.org/10.1039/B715524G

    Article  Google Scholar 

  35. Itoh, H., Okamura, H., Nakamura, C., Abe, T., Nakayama, M., Komatsu, R.: Growth of spherical Si crystals on porous Si3N4 substrate that repels Si melt. J. Cryst. Growth. 401, 748–752 (2014). https://doi.org/10.1016/j.jcrysgro.2013.12.052

    Article  Google Scholar 

  36. Suzuki, S., Nakajima, A., Yoshida, N., Sakai, M., Hashimoto, A., Kameshima, Y., Okada, K.: Freezing of water droplets on silicon surfaces coated with various silanes. Chem. Phys. Lett. 445, 37–41 (2007). https://doi.org/10.1016/j.cplett.2007.07.066

    Article  Google Scholar 

  37. Zhang, H., Zhao, Y., Lv, R., Yang, C.: Freezing of sessile water droplet for various contact angles. Int. J. Therm. Sci. 101, 59–67 (2016). https://doi.org/10.1016/j.ijthermalsci.2015.10.027

    Article  Google Scholar 

  38. Oberli, L., Caruso, D., Hall, C., Fabretto, M., Murphy, P.J., Evans, D.: Condensation and freezing of droplets on superhydrophobic surfaces. Adv. Colloid Interface Sci. 210, 47–57 (2014). https://doi.org/10.1016/j.cis.2013.10.018

    Article  Google Scholar 

  39. Anderson, D.M., Worster, M.G., Davis, S.H.: The case for a dynamic contact angle in containerless solidification. J. Cryst. Growth. 163, 329–338 (1996). https://doi.org/10.1016/0022-0248(95)00970-1

    Article  Google Scholar 

  40. Cao, M., Jiang, F., Wang, C., Cui, H., Guo, C., Chang, Y., Wang, Z.: Preparation, microstructure and mechanical property of double-layered metal-ceramic hollow spheres. Mater. Sci. Eng. A. 780, 139188 (2020). https://doi.org/10.1016/j.msea.2020.139188

    Article  Google Scholar 

  41. Kumar, A., Gu, S., Tabbara, H., Kamnis, S.: Study of impingement of hollow ZrO 2 droplets onto a substrate. Surf. Coat. Technol. 220, 164–169 (2013)

    Article  Google Scholar 

  42. Augustin, C. ed: Multifunctional metallic hollow sphere structures: manufacturing, properties and application. Springer (2009)

  43. Nadler, J.H., Sanders, T.H., Jr., Cochran, J.K.: Aluminum hollow sphere processing. Mater. Sci. Forum. 331–337, 495–500 (2000)

    Article  Google Scholar 

  44. Felton, R.: Hollow metal spheres put Fraunhofer on a roll, http://www.sciencedirect.com/science/article/pii/S0026065710700187, (2009)

  45. Vu, T.V.: Fully resolved simulations of drop solidification under forced convection. Int. J. Heat Mass Transf. 122, 252–263 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.124

    Article  Google Scholar 

  46. Vu, T.V., Nguyen, C.T., Luu, Q.H.: Numerical study of a liquid drop on an inclined surface with solidification. Int. J. Heat Mass Transf. 144, 118636 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.118636

    Article  Google Scholar 

  47. Zhang, X., Liu, X., Min, J., Wu, X.: Shape variation and unique tip formation of a sessile water droplet during freezing. Appl. Therm. Eng. 147, 927–934 (2019). https://doi.org/10.1016/j.applthermaleng.2018.09.040

    Article  Google Scholar 

  48. Vu, T.V.: Deformation and breakup of a pendant drop with solidification. Int. J. Heat Mass Transf. 122, 341–353 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.125

    Article  Google Scholar 

  49. Vu, T.V., Truong, A.V., Hoang, N.T.B., Tran, D.K.: Numerical investigations of solidification around a circular cylinder under forced convection. J. Mech. Sci. Technol. 30, 5019–5028 (2016). https://doi.org/10.1007/s12206-016-1021-9

    Article  Google Scholar 

  50. Vu, T.V., Wells, J.C.: Numerical simulations of solidification around two tandemly-arranged circular cylinders under forced convection. Int. J. Multiph. Flow. 89, 331–344 (2017). https://doi.org/10.1016/j.ijmultiphaseflow.2016.11.007

    Article  Google Scholar 

  51. Minemoto, T., Takakura, H.: Fabrication of spherical silicon crystals by dropping method and their application to solar cells. Jpn. J. Appl. Phys. 46, 4016–4020 (2007). https://doi.org/10.1143/JJAP.46.4016

    Article  Google Scholar 

  52. Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., Jan, Y.-J.: A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169, 708–759 (2001). https://doi.org/10.1006/jcph.2001.6726

    Article  MathSciNet  MATH  Google Scholar 

  53. Vu, T.V., Tryggvason, G., Homma, S., Wells, J.C., Takakura, H.: A front-tracking method for three-phase computations of solidification with volume change. J. Chem. Eng. Jpn. 46, 726–731 (2013). https://doi.org/10.1252/jcej.13we169

    Article  Google Scholar 

  54. Alekseenko, S.V., Mendig, C., Schulz, M., Sinapius, M., Prykhodko, O.A.: An experimental study of freezing of supercooled water droplet on solid surface. Tech. Phys. Lett. 42, 524–527 (2016). https://doi.org/10.1134/S1063785016050187

    Article  Google Scholar 

  55. Vu, T.V.: Axisymmetric forced convection solidification of a liquid drop on a cold plate. Int. J. Multiph. Flow. 107, 104–115 (2018). https://doi.org/10.1016/j.ijmultiphaseflow.2018.05.023

    Article  MathSciNet  Google Scholar 

  56. Vu, T.V., Dao, K.V., Pham, B.D.: Numerical simulation of the freezing process of a water drop attached to a cold plate. J. Mech. Sci. Technol. 32, 2119–2126 (2018). https://doi.org/10.1007/s12206-018-0421-4

    Article  Google Scholar 

  57. Vu, T.V., Nguyen, C.T., Khanh, D.T.: Direct numerical study of a molten metal drop solidifying on a cold plate with different wettability. Metals. 8, 47 (2018). https://doi.org/10.3390/met8010047

    Article  Google Scholar 

  58. Ismail, M.F., Waghmare, P.R.: Universality in freezing of an asymmetric drop. Appl. Phys. Lett. 109, 234105 (2016). https://doi.org/10.1063/1.4971995

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 107.03-2019.307.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Truong V. Vu or Nang X. Ho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, B.D., Vu, T.V., Nguyen, L.V.T. et al. A numerical study of geometrical effects on solidification of a compound droplet on a cold flat surface. Acta Mech 232, 3767–3779 (2021). https://doi.org/10.1007/s00707-021-03024-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-03024-2

Navigation