Advertisement

A finite element for soft tissue deformation based on the absolute nodal coordinate formulation

  • Leonid P. Obrezkov
  • Marko K. Matikainen
  • Ajay B. HarishEmail author
Original Paper

Abstract

This paper introduces an implementation of the absolute nodal coordinate formulation (ANCF) that can be used to model fibrous soft tissue in cases of three-dimensional elasticity. It is validated against results from existing incompressible material models. The numerical results for large deformations based on this new ANCF element are compared to results from analytical and commercial software solutions, and the relevance of the implementation to the modeling of biological tissues is discussed. Also considered is how these results relate to the classical results seen in Treloar’s rubber experiments. All the models investigated are considered from both elastic and static points of view. For isotropic cases, neo-Hookean and Mooney–Rivlin models are examined. For the anisotropic case, the Gasser–Ogden–Holzapfel model, including a fiber dispersion variation, is considered. The results produced by the subject ANCF models agreed with results obtained from the commercial software. For the isotropic cases, in fact, the numerical solutions based on the ANCF element were more accurate than those produced by ANSYS.

Notes

Acknowledgements

We would like to thank the Research Foundation of the Lappeenranta University of Technology and the Academy of Finland (Application No. 299033 for funding 519 of Academy Research Fellow) for the generous grants that made this work possible.

References

  1. 1.
    Bauchau, O.A., Han, S., Mikkola, A., Matikainen, M.K.: Comparison of the absolute nodal coordinate and geometrically exact formulations for beams. Multibody Syst. Dyn. 32, 67–85 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bauchau, O.A., Han, S., Mikkola, A., Matikainen, M.K., Gruber, P.: Experimental validation of flexible multibody dynamics beam formulations. Multibody Syst. Dyn. 34, 373–389 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bauchau, O.A., Wu, G., Betsch, P., Cardona, A., Gerstmayr, J., Jonker, J.B., Masarati, P., Sonneville, V.: Validation of flexible multibody dynamics beam formulations using benchmark problems. Multibody Syst. Dyn. 37, 29–48 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Betsch, P. (ed.): Structure-preserving integrators in nonlinear structural dynamics and flexible multibody dynamics. In: CISM International Centre for Mechanical Sciences, vol 565, 1st edn. Springer, Berlin (2016)Google Scholar
  5. 5.
    Bozorgmehri, B., Hurskainen, V.V., Matikainen, M.K., Mikkola, A.: Dynamic analysis of rotating shafts using the absolute nodal coordinate formulation. J. Sound Vib. 453, 214–236 (2019)CrossRefGoogle Scholar
  6. 6.
    Doll, S., Schweizerhof, K.: On the development of volumetric strain energy functions. J. Appl. Mech. 67, 17–21 (1999)zbMATHCrossRefGoogle Scholar
  7. 7.
    Ebel, H., Matikainen, M.K., Hurskainen, V.V., Mikkola, A.: Higher-order beam elements based on the absolute nodal coordinate formulation for three-dimensional elasticity. Nonlinear Dyn. 88, 1075–1091 (2017)CrossRefGoogle Scholar
  8. 8.
    Escalona, J.L., Hussien, H.A., Shabana, A.A.: Application of absolute nodal co-ordinate formulation to multibody system dynamics. J. Sound Vib. 214, 833–851 (1998)CrossRefGoogle Scholar
  9. 9.
    Flory, P.J.: Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 57, 829–838 (1961)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Franchi, M., Trirè, A., Quaranta, M., Orsini, E., Ottani, V.: Collagen structure of tendon relates to function. Sci. World J. 7, 404–420 (2007)CrossRefGoogle Scholar
  11. 11.
    Gasser, T.C., Ogden, W.R., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3, 15–35 (2006)CrossRefGoogle Scholar
  12. 12.
    Gerstmayr, J., Sugiyama, H., Mikkola, A.: Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. J. Comput. Nonlinear Dyn. 8, 031016 (2013)CrossRefGoogle Scholar
  13. 13.
    Gonçalves, P.B., Pamplona, D., Lopes, S.R.X.: Finite deformations of an initially stressed cylindrical shell under internal pressure. Int. J. Mech. Sci. 5, 92–103 (2008)zbMATHCrossRefGoogle Scholar
  14. 14.
    Grossi, E., Shabana, A.A.: Analysis of high-frequency ANCF modes: Navier-stokes physical damping and implicit numerical integration. Acta Mech. 230, 2581–2605 (2019)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Holzapfel, G.: Determination of material models for arterial walls from uniaxial extension tests and histological structure. J. Theor. Biol. 238, 290–302 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Holzapfel, G.A., Gasser, T.C.: A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications. Comput. Methods Appl. Mech. Eng. 190, 4379–4403 (2001)CrossRefGoogle Scholar
  17. 17.
    Holzapfel, G.A., Ogden, R.W.: Constitutive modelling of arteries. Proc. Math. Phys. Eng. Sci. 466, 1551–1597 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Horgan, C.O., Saccomandi, G.: Constitutive modelling of rubber-like and biological materials with limiting chain extensibility. Math. Mech. Solids 7, 353–371 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Khayyeri, H., Longo, G., Gustafsson, A., Isaksson, H.: Comparison of structural anisotropic soft tissue models for simulating achilles tendon tensile behaviour. J. Mech. Behav. Biomed. Mater. 61, 431–443 (2016)CrossRefGoogle Scholar
  20. 20.
    Kulkarni, S., Shabana, A.A.: Spatial ANCF/CRBF beam elements. Acta Mech. 230, 929–952 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Li, W.: Biomechanical property and modelling of venous wall. Prog. Biophys. Mol. Biol. 133, 56–75 (2018)CrossRefGoogle Scholar
  22. 22.
    Lu, S.H.C., Pister, K.S.: Decomposition of deformation and representation of the free energy function for isotropic thermoelastic solids. Int. J. Solids Struct. 11, 927–934 (1975)zbMATHCrossRefGoogle Scholar
  23. 23.
    Maqueda, L., Shabana, A.: Poisson modes and general nonlinear constitutive models in the large displacement analysis of beams. Multibody Syst. Dyn. 18, 375–396 (2007)zbMATHCrossRefGoogle Scholar
  24. 24.
    Maqueda, L.G., Shabana, A.A.: Nonlinear constitutive models and the finite element absolute nodal coordinate formulation. In: ASME Proc. 6th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A, B, and C, vol. 5, pp. 1033–1037 (2007)Google Scholar
  25. 25.
    Maqueda, L.G., Bauchau, O.A., Shabana, A.A.: Effect of the centrifugal forces on the finite element eigenvalue solution of a rotating blade: a comparative study. Multibody Syst. Dyn. 19, 281–302 (2008)zbMATHCrossRefGoogle Scholar
  26. 26.
    Meister, T.A., Rexhaj, E., Rimoldi, S.F., Scherrer, U., Sartori, C.: Fetal programming and vascular dysfunction. Artery Res. 21, 69–77 (2018)CrossRefGoogle Scholar
  27. 27.
    Mikkola, A.M., Shabana, A.A.: A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications. Multibody Syst. Dyn. 9, 283–309 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Mooney, M.: A theory of large elastic deformation. J. Appl. Phys. 11, 582–592 (1940)zbMATHCrossRefGoogle Scholar
  29. 29.
    Nachbagauer, K.: State of the art of ANCF elements regarding geometric description, interpolation strategies, definition of elastic forces, validation and the locking phenomenon in comparison with proposed beam finite element. Arch. Comput. Methods Eng. 21, 293–319 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Nachbagauer, K., Pechstein, A.S., Irschik, H., Gerstmayr, J.: A new locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 26(3), 245–263 (2011)zbMATHCrossRefGoogle Scholar
  31. 31.
    Nachbagauer, K., Gruber, P., Gerstmayr, J.: Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: application to static and linearized dynamic examples. J. Comput. Nonlinear Dyn. 8, 021004 (2013)CrossRefGoogle Scholar
  32. 32.
    Nah, C., Lee, G.B., Lim, J., Kim, Y., SenGupta, R., Gent, A.: Problems in determining the elastic strain energy function for rubber. Int. J. Non-Linear Mech. 45, 232–235 (2010)CrossRefGoogle Scholar
  33. 33.
    Ogden, R.W.: Elastic ddformations of rubberlike solids. In: Hopkins, H.G., Sewell, M.J. (eds.) Mechanics of Solids, Mechanics of Solids: The Rodney Hill 60th Anniversary, pp. 499–537. Elsevier, Amsterdam (1982)CrossRefGoogle Scholar
  34. 34.
    Orzechowski, G., Fra̧czeks, J.: Nearly incompressible nonlinear material models in the large deformation analysis of beams using ANCF. Nonlinear Dyn. 82, 451–464 (2015)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Patel, M., Shabana, A.A.: Locking alleviation in the large displacement analysis of beam elements: the strain split method. Acta Mech. 229, 2923–2946 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Pierre, B., Stéphane, A., Susan, L., Michael, S.: Mechanical identification of hyperelastic anisotropic properties of mouse carotid arteries. In: Proulx, T. (ed.) Mechanics of Biological Systems and Materials, vol. 2, pp. 11–17. Springer, New York (2011)Google Scholar
  37. 37.
    Rachev, A., Greenwald, S.E.: Residual strains in conduit arteries. J. Biomech. 36, 661–670 (2003)CrossRefGoogle Scholar
  38. 38.
    Rivlin, R.S.: Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 241, 379–397 (1948)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Shabana, A.A.: Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 1, 339–348 (1997)zbMATHCrossRefGoogle Scholar
  40. 40.
    Shen, Z., Li, P., Liu, C., Hu, G.: A finite element beam model including cross-section distortion in the absolute nodal coordinate formulation. Nonlinear Dyn. 77(3), 1019–1033 (2014)CrossRefGoogle Scholar
  41. 41.
    Shmurak, M.I., Kuchumov, A.G., Voronova, N.O.: Hyperelastic models analysis for description of soft human tissues behavior. Master’s J. 1, 230–243 (2017)Google Scholar
  42. 42.
    Simo, J.C., Taylor, R.L., Pister, K.S.: Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput. Methods Appl. Mech. Eng. 51, 177–208 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Skarel, P., Bursa, J.: Comparison of constitutive models of arterial layers with distributed collagen fibre orientations. Acta Bioeng. Biomech. 16, 47–58 (2014)Google Scholar
  44. 44.
    Sokhanvar, S., Dargahi, J., Packirisamy, M.: Hyperelastic modelling and parametric study of soft tissue embedded lump for mis applications. Int. J. Med. Robot. Comput. Assist. Surg. 4, 232–241 (2008)CrossRefGoogle Scholar
  45. 45.
    Steinmann, P., Hossain, M., Possart, G.: Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar’s data. Arch. Appl. Mech. 89, 1183–1217 (2012)zbMATHCrossRefGoogle Scholar
  46. 46.
    Treloar, L.R.G.: Stress-strain data for vulcanised rubber under various types of deformation. Trans. Faraday Soc. 40, 59–70 (1944)CrossRefGoogle Scholar
  47. 47.
    Weiss, J.A., Gardiner, J.C.: Computational modeling of ligament mechanics. Crit. Rev. Biomed. Eng. 29, 303–371 (2001)CrossRefGoogle Scholar
  48. 48.
    Weiss, J.A., Maker, B.N., Govindjee, S.: Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput. Methods Appl. Mech. Eng. 135, 107–128 (1996)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Lappeenranta University of TechnologyLappeenrantaFinland
  2. 2.Institute of Continuum MechanicsLeibniz University HannoverHannoverGermany

Personalised recommendations