An analytic study on nonlinear radius change for hyperelastic tubular organs under volume expansion

  • Kun GouEmail author
  • Mallikarjunaiah S. Muddamallappa
Original Paper


Tubular organs with multilayers are common in human bodies and important for maintaining normal lives by transporting fluid, nutrient, or waste throughout the bodies. The inner layers of the organs are usually soft and can easily increase their volume under various adverse physiological effects such as edema and plaque growth. The volume expansion can also alter the stiffness of the organ tissues. The corresponding finite deformation of the tubular organs may significantly modify the size of the inner opening determining transportation capability. Deep understanding of the pattern of the luminal radius change is vital for treating related diseases incurred by the volume expansion. For this purpose, a two-layered tubular organ is modeled by generalized hyperelasticity, and the modeling is analyzed mathematically to more thoroughly demonstrate the nonlinear patterns of radius change under volume expansion and corresponding stiffness alteration. This article serves as an exemplary study for other tubular organs with more complicated structure and volume expansion characteristics.



Kun Gou is grateful to the Texas A&M University-San Antonio College of Arts and Sciences Summer Faculty Research Grant/Fellowship.


  1. 1.
    Netter, F.H.: Atlas of Human Anatomy. Elsevier, Amsterdam (2014)Google Scholar
  2. 2.
    Minnich, D.J., Mathisen, D.J.: Anatomy of the trachea, carina, and bronchi. Thorac. Surg. Clin. 17(4), 571–585 (2007)CrossRefGoogle Scholar
  3. 3.
    Ludmir, J., Sehdev, H.M.: Anatomy and physiology of the uterine cervix. Clin. Obstet. Gynecol. 43, 433–439 (2000)CrossRefGoogle Scholar
  4. 4.
    Humphrey, J.: Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. Springer, New York (2002)CrossRefGoogle Scholar
  5. 5.
    Patti, M.G., Gantert, W., Way, L.W.: Surgery of the esophagus: anatomy and physiology. Surg. Clin. 77, 959–970 (1997)CrossRefGoogle Scholar
  6. 6.
    Gou, K., Pence, T.J.: Computational modeling of tracheal angioedema due to swelling of the submucous tissue layer. Int. J. Numer. Method Biomed. Eng. 33(10), e2861 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Eickhoff, A., Pickhardt, P.J., Hartmann, D., Riemann, J.F.: Colon anatomy based on CT colonography and fluoroscopy: impact on looping, straightening and ancillary manoeuvres in colonoscopy. Dig. Liver Dis. 42(4), 291–296 (2010)CrossRefGoogle Scholar
  8. 8.
    Liaoa, D., Heea, L., Sandagera, P., Uldbjerga, N., Gregersenc, H.: Identification of biomechanical properties in vivo in human uterine cervix. J. Mech. Behav. Biomed. Mater. 39, 27–37 (2014)CrossRefGoogle Scholar
  9. 9.
    Weiss, M., Baumeister, R.G., Hahn, K.: Dynamic lymph flow imaging in patients with oedema of the lower limb for evaluation of the functional outcome after autologous lymph vessel transplantation: an 8-year follow-up study. Eur. J. Nucl. Med. Mol. Imaging 30(2), 202–206 (2003)CrossRefGoogle Scholar
  10. 10.
    Fok, P.W.: Multi-layer mechanical model of Glagov remodeling in coronary arteries: differences between in-vivo and ex-vivo measurements. PLoS ONE 11, e0159304 (2016)CrossRefGoogle Scholar
  11. 11.
    Wang, L., Tepper, R., Bert, J.L., Pinder, K.L., Par, P.D., Okazawa, M.: Mechanical properties of the tracheal mucosal membrane in the rabbit. I. Steady-state stiffness as a function of age. J. Appl. Physiol. 88, 1014–1021 (2000)CrossRefGoogle Scholar
  12. 12.
    Brand-Saber, B.E.M., Schäfer, T.: Trachea: anatomy and physiology. Thorac. Surg. Clin. 24(1), 1–5 (2014)CrossRefGoogle Scholar
  13. 13.
    Krnacik, M.J., Heggeness, M.H.: Severe angioedema causing airway obstruction after anterior cervical surgery. Spine 22, 2188–2190 (1997)CrossRefGoogle Scholar
  14. 14.
    James, A.L., Paré, P.D., Hogg, J.C.: The mechanics of airway narrowing in asthma. Am. Rev. Respir. Dis. 139(1), 242–246 (1989) CrossRefGoogle Scholar
  15. 15.
    Ross, R.: The pathogenesis of atherosclerosis-an update. N. Engl. J. Med. 314, 488–500 (1986)CrossRefGoogle Scholar
  16. 16.
    Iams, J.D., Paraskos, J., London, M.B., Teteris, J.N., Johnson, F.F.: Cervical sonography in preterm labor. Obstet. Gynecol. 84(1), 40–46 (1994)Google Scholar
  17. 17.
    Gou, K., Pence, T.J.: Hyperelastic modeling of swelling in fibrous soft tissue with application to tracheal angioedema. J. Math. Biol. 72, 499–526 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gou, K.: Mathematical modeling of tracheal luminal size change under angioedema-caused stiffness alteration. (2018). Accessed 5 July 2018
  19. 19.
    Fok, P.K., Sanft, R.: A biochemical and mechanical model of injury-induced intimal thickening. Math. Med. Biol. 34(1), 77–108 (2017)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Thomas, M., McKinley, R.K., Freeman, E., Foy, C., Prodger, P., Price, D.: Breathing retraining for dysfunctional breathing in asthma: a randomised controlled trial. BMJ Open Respir. Res. 58, 110–115 (2003)Google Scholar
  21. 21.
    Claassen, J., Carhuapoma, J.R., Kreiter, K.T., Du, E.Y., Connolly, E.S., Mayer, S.A.: Global cerebral edema after subarachnoid hemorrhage: frequency, predictors, and impact on outcome. Stroke 33, 1225–1232 (2002)CrossRefGoogle Scholar
  22. 22.
    Falk, J.L.: Fluid resuscitation and colloid-crystalloid controversy: new thoughts on an old debate. Crit. Care Med. 19, 451–3 (1991)CrossRefGoogle Scholar
  23. 23.
    Hudgel, W.D.: Variable site of airway narrowing among obstructive sleep apnea patients. J. Appl. Physiol. 61, 1403–1409 (1986)CrossRefGoogle Scholar
  24. 24.
    Gou, K., Fok, P.W., Fu, Y.: Nonlinear tubular organ modeling and analysis for tracheal angioedema by swelling-morphoelasticity. J. Eng. Math. 112, 95–117 (2018)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Pogátsa, G., Dubecz, E., Gábor, G.: The role of myocardial edema in the left ventricular diastolic stiffness. Basic Res. Cardiol. 71(3), 263–269 (1976)CrossRefGoogle Scholar
  26. 26.
    Giudice, M.L.: Effects of continuous passive motion and elevation on hand edema. Am. J. Occup. Ther. 44(10), 914–921 (1990)CrossRefGoogle Scholar
  27. 27.
    Radhakrishnan, R.S., Xue, H., Weisbrodt, N., Moore, F.A., Allen, S.J., Laine, G., Cox, C.S.: Resuscitation-induced intestinal edema decreases the stiffness and residual stress of the intestine. Shock 24(2), 165–170 (2005)CrossRefGoogle Scholar
  28. 28.
    Danforth, D.N., Veis, A., Breen, M., Weinstein, H.G., Buckingham, J.C., Manalo, P.: The effect of pregnancy and labor on the human cervix: changes in collagen, glycoproteins, and glycosaminoglycans. Am. J. Obstet. Gynecol. 120(5), 641–651 (1974)CrossRefGoogle Scholar
  29. 29.
    Tsai, H., Pence, T.J.: Swelling induced finite strain flexure in a rectangular block of an isotropic elastic material. J. Elast. 75, 69–89 (2004)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Demirkoparana, H., Pence, T.J.: Swelling of an internally pressurized nonlinearly elastic tube with fiber reinforcing. Int. J. Solids Struct. 44, 4009–4029 (2007)CrossRefGoogle Scholar
  31. 31.
    Merodio, J., Ogden, R.W.: Extension, inflation and torsion of a residually stressed circular cylindrical tube. Contin. Mech. Thermodyn. 28, 157–174 (2016)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Ciarletta, P., Balbi, V., Kuhl, E.: Pattern selection in growing tubular tissues. Phys. Rev. Lett. 113, 248101 (2014)CrossRefGoogle Scholar
  33. 33.
    Demirkoparan, H., Merodio, J.: Bulging bifurcation of inflated circular cylinders of doubly fiber-reinforced hyperelastic material under axial loading and swelling. Math. Mech. Solids. 22, 666–682 (2017)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Merodio, J., Haughton, D.M.: Bifurcation of thick-walled cylindrical shells and the mechanical response of arterial tissue affected by Marfan’s syndrome. Mech. Res. Commun. 37, 1–6 (2010)CrossRefGoogle Scholar
  35. 35.
    El Hamdaoui, M., Merodio, J., Ogden, R.W., Rodríguez, J.: Finite elastic deformations of transversely isotropic circular cylindrical tubes. Int. J. Solids. Struct. 51, 1188–1196 (2014)CrossRefGoogle Scholar
  36. 36.
    El Hamdaoui, M., Merodio, J., Ogden, R.W.: Loss of ellipticity in the combined helical, axial and radial elastic deformations of a fiber-reinforced circular cylindrical tube. Int. J. Solids Struct. 63, 99–108 (2015)CrossRefGoogle Scholar
  37. 37.
    Demirkoparan, H., Merodio, J.: Swelling and axial propagation of bulging with application to aneurysm propagation in arteries. Math. Mech. Solids. (2017). CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Science and MathematicsTexas A&M University-San AntonioSan AntonioUSA
  2. 2.Department of Mathematics and StatisticsTexas A&M University-Corpus ChristiCorpus ChristiUSA

Personalised recommendations