Advertisement

Preservation of adiabatic invariants for disturbed Hamiltonian systems under variational discretization

  • Li-Li XiaEmail author
  • Long Bai
Original Paper
  • 25 Downloads

Abstract

The perturbation to conformal invariance and the numerical algorithm of Hamiltonian systems with disturbed forces under variational discretization are studied in this paper. Based on the discrete difference variational principles, the discrete Hamiltonian equations (variational integrators) for dynamical systems are obtained in the undisturbed and the disturbed cases, respectively. The determining equations of perturbation to conformal invariance are established for disturbed Hamiltonian systems. The exact invariants of Noether type led by conformal invariance for an undisturbed Hamiltonian system are derived. For disturbed discrete Hamiltonian systems, the condition of perturbation to conformal invariance leading to adiabatic invariants is proposed. Two examples are considered: a simple harmonic oscillator and the Kepler problem. The dynamical analysis is given by using the numerical results.

Notes

Acknowledgements

This work is partly supported by National Natural Science Foundation of China (Grand Nos.11502071 and 11732005), the spatial research project and Qin Xin Talents Cultivation Program of Beijing Information Science and Technology University.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

References

  1. 1.
    Pritula, G.M., Petrenko, E.V., Usatenko, O.V.: Adiabatic dynamics of one-dimensional classical Hamiltonian dissipative systems. Phys. Lett. A 382, 548–553 (2018)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Burgers, J.M.: Die adiabatischen Invarianten bedingt periodischer Systeme. Ann. Phys. 52, 195–202 (1917)CrossRefGoogle Scholar
  3. 3.
    Nayfeh, A.H., Balachandran, B.: Modal interactions in dynamical and structural systems. Appl. Mech. Rev. 42, S175–S201 (1989)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Noether, A.E.: Invariante Variationsprobleme. Nachr. Akad. Wiss. Gött. Math.-Phys. Kl. 2, 235–257 (1918)zbMATHGoogle Scholar
  5. 5.
    Lutzky, M.: Non-invariance symmetries and constants of the motion. Phys. Lett. A 72, 86–88 (1979)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Mei, F.X.: Form invariance of Lagrange system. J. Beijing Inst. Technol. 9, 120–124 (2000)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Luo, S.K., Li, Z.J., Peng, W., Li, L.: A Lie symmetrical basic integral variable relation and a new conservation law for generalized Hamiltonian systems. Acta Mech. 224, 71–84 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Jiang, W.A., Liu, K., Zhao, G.L., Chen, M.: Noether symmetrical perturbation and adiabatic invariants for disturbed non-material volumes. Acta Mech. 229, 4771–4778 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Zhang, Y., Wang, X.P.: Lie symmetry perturbation and adiabatic invariants for dynamical system with non-standard Lagrangians. Int. J. Nonlin. Mech. 105, 165–172 (2018)CrossRefGoogle Scholar
  10. 10.
    Ali, M.N., Seadawy, A.R., Husnine, S.M.: Lie point symmetries exact solutions and conservation laws of perturbed Zakharov–Kuznetsov equation with higher-order dispersion term. Mod. Phys. Lett. A 34, 1950027 (2019)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Luo, S.K., Yang, M.J., Zhang, X.T., Dai, Y.: Basic theory of fractional Mei symmetrical perturbation and its applications. Acta Mech. 229, 1833–1848 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Galiullin, A.S., Gafarov, G.G., Malaishka, R.P., Khwan, A.M.: Analytical Dynamics of Helmholtz, Birkhoff and Nambu Systems. UFN, Moscow (1997)Google Scholar
  13. 13.
    Cai, J.L.: Conformal invariance of Mei symmetry for the non-holonomic systems of non-Chetaev’s type. Nonlinear Dyn. 69, 487–493 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Karevski, D., Schütz, G.M.: Conformal invariance in driven diffusive systems at high currents. Phys. Rev. Lett. 118, 030601 (2017)CrossRefGoogle Scholar
  15. 15.
    Wang, P.: Conformal invariance and conserved quantities of mechanical system with unilateral constraints. Commun. Nonlinear Sci. 59, 463–471 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Xia, L.L., Ge, X.S., Chen, L.Q.: Discrete symmetrical perturbation and the variational algorithm of disturbed Lagrangian systems. Chin. Phys. B 28, 030201 (2019)CrossRefGoogle Scholar
  17. 17.
    Wendlandt, J.M., Marsden, J.E.: Mechanical integrators derived from a discrete variational principle. Phys. D 106, 223–246 (1997)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numer. 10, 357–514 (2001)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Colombo, L., Ferraro, S., Diego, D.M.D.: Geometric integrators for higher-order variational systems and their application to optimal control. J. Nonlinear Sci. 26, 1615–1650 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Jiménez, F.: Discrete variational optimal control. J. Nonlinear Sci. 23, 393–426 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Bourabee, N., Owhadi, H.: Stochastic variational integrators. IMA J. Numer. Anal. 29, 421–443 (2008)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Holm, D.D., Tyranowski, T.M.: Stochastic discrete Hamiltonian variational integrators. BIT 58, 1009–1048 (2018)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Bai, L., Ge, X.S.: Dynamic modeling of spacecraft solar panels deployment with Lie group variational integrator. TAML 8, 415–424 (2018)Google Scholar
  24. 24.
    Ebrahimi, M., Butscher, A., Cheong, H., Iorio, F.: Design optimization of dynamic flexible multibody systems using the discrete adjoint variable method. Comput. Struct. 213, 82–99 (2019)CrossRefGoogle Scholar
  25. 25.
    Wenger, T., Ober-Blöbaum, S., Leyendecker, S.: Construction and analysis of higher order variational integrators for dynamical systems with holonomic constraints. Adv. Comput. Math. 43, 1163–1195 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    McLachlan, R., Perlmutter, M.: Integrators for nonholonomic mechanical systems. J. Nonlinear Sci. 16, 283–328 (2006)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Chang, D.E., Perlmutter, M.: Feedback integrators for nonholonomic mechanical systems. J. Nonlinear Sci. 29, 1165–1204 (2019)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Dorodnitsyn, V., Kozlov, R.: Invariance and first integrals of continuous and discrete Hamiltonian equations. J. Eng. Math. 66, 253–270 (2010)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Fu, J.L., Fu, L.P., Chen, B.Y., Sun, Y.: Lie symmetries and their inverse problems of nonholonomic Hamilton systems with fractional derivatives. Phys. Lett. A 380, 15–21 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Xia, L.L., Chen, L.Q.: Mei symmetries and conserved quantities for non-conservative Hamiltonian difference systems with irregular lattices. Nonlinear Dyn. 70, 1223–1230 (2012)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Baikov, V.A., Gazizov, R.K., Ibragimov, N.H.: Perturbation methods in group analysis. J. Math. Sci. 55, 1450–1490 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of ScienceBeijing Information Science and Technology UniversityBeijingChina
  2. 2.Mechanical and Electrical Engineering SchoolBeijing Information Science and Technology UniversityBeijingChina

Personalised recommendations