Variational principles for nonlinear Kirchhoff rods

  • Ignacio RomeroEmail author
  • Cristian G. Gebhardt
Original Paper


The present article studies variational principles for the formulation of static and dynamic problems involving Kirchhoff rods in a fully nonlinear setting. These results, some of them new, others scattered in the literature, are presented in a self-contained fashion, helping to clarify certain aspects that have remained obscure. In particular, the study of transversely isotropic models reveals the delicate role that differential geometry plays in their formulation and unveils consequently some approximations that can be made to obtain simplified formulations.



  1. 1.
    Antman, S.S.: Kirchhoff’s problem for nonlinearly elastic rods. Q. Appl. Math. 32, 221–240 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Antman, S.S.: Nonlinear Problems of Elasticity. Springer, New York (1995)zbMATHCrossRefGoogle Scholar
  3. 3.
    Audoly, B., Clauvelin, N., Neukirch, S.: Elastic knots. Phys. Rev. Lett 99, 164301 (2007)CrossRefGoogle Scholar
  4. 4.
    Benham, C.J.: An elastic model of the large-scale structure of duplex DNA. Biopolymers 18, 609–623 (1979)CrossRefGoogle Scholar
  5. 5.
    Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., Grinspun, E.: Discrete elastic rods. ACM Trans. Graph. 27, 1–12 (2008)CrossRefGoogle Scholar
  6. 6.
    Bertails, F., Audoly, B., Cani, M.P., Querleux, B., Leroy, F., Lévêque, J.L.: Super-helices for predicting the dynamics of natural hair. ACM Trans. Graph. (TOG) 25, 1180–1187 (2006)CrossRefGoogle Scholar
  7. 7.
    Bishop, R.L.: There is more than one way to frame a curve. Am. Math. Mon. 82, 246–251 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bloch, A.M.: Nonholonomic Mechanics and Control. Springer, New York (2003)CrossRefGoogle Scholar
  9. 9.
    Boyer, F., De Nayer, G., Leroyer, A., Visonneau, M.: Geometrically exact Kirchhoff beam theory: application to cable dynamics. J. Comput. Nonlinear Dyn. 6, 041004–14 (2011)CrossRefGoogle Scholar
  10. 10.
    Boyer, Y., Primault, D.: Finite element of slender beams in finite transformations: a geometrically exact approach. Int. J. Numer. Methods Eng. 55, 669–702 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Cheng, Y.C., Feng, S.T., Hu, K.: Stability of anisotropic, naturally straight, helical elastic thin rods. Math. Mech. Solids 22, 2108–2119 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Clebsch, A.: Theorie der Elastizität fester Körper. B.G. Teubner, Leipzig (1862)Google Scholar
  13. 13.
    Coleman, B.D., Dill, E.H., Lembo, M., Lu, Z., Tobias, I.: On the dynamics of rods in the theory of Kirchhoff and Clebsch. Arch. Ration. Mech. Anal. 121, 339–359 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Cosserat, E., Cosserat, F.: Théorie des corps déformables. A. Hermann et fils, Paris (1909)zbMATHGoogle Scholar
  15. 15.
    Coyne, J.: Analysis of the formation and elimination of loops in twisted cable. IEEE J. Ocean. Eng. 15, 72–83 (1990)CrossRefGoogle Scholar
  16. 16.
    Dichmann, D.J., Li, Y., Maddocks, J.H.: Hamiltonian formulations and symmetries in rod mechanics. In: Mesirov, J.P., Schulten, K., Sumners, D.W. (eds.) Mathematical Approaches to Biomolecular Structure and Dynamics. The IMA Volumes in Mathematics and its Applications, vol. 82. Springer, New York, NY (1996) zbMATHCrossRefGoogle Scholar
  17. 17.
    Dill, E.H.: Kirchhoff’s theory of rods. Arch. Hist. Exact Sci. 44, 1–23 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Eisenberg, M., Guy, R.: A proof of the hairy ball theorem. Am. Math. Mon. 86, 571–574 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Farouki, R.T.: Pythagorean-Hodograph Curves—Algebra and Geometry Inseparable. Springer, New York (2008)zbMATHCrossRefGoogle Scholar
  20. 20.
    Farouki, R.T.: Rational rotation-minimizing frames-Recent advances and open problems. Appl. Math. Comput. 272, 80–91 (2016)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Fukumoto, Y.: Analogy between a vortex–jet filament and the Kirchhoff elastic rod. Fluid Dyn. Res. 39, 511–520 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Goriely, A., Nizette, M., Tabor, M.: On the dynamics of elastic strips. J. Nonlinear Sci. 11, 3–45 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Greco, L., Cuomo, M.: B-Spline interpolation of Kirchhoff-Love space rods. Comput. Methods Appl. Mech. Eng. 256, 251–269 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Greco, L., Cuomo, M.: An implicit G\(^{1}\) multi patch B-spline interpolation for Kirchhoff–Love space rod. Comput. Methods Appl. Mech. Eng. 269, 173–197 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, 2nd edn. Springer, Berlin (2006)zbMATHGoogle Scholar
  26. 26.
    Han, S.M., Benaroya, H., Wei, T.: Dynamics of transversely vibrating beams using four engineering theories. J. Sound Vib. 225, 935–988 (1999)zbMATHCrossRefGoogle Scholar
  27. 27.
    Ivey, T.A., Singer, D.A.: Knot types, homotopies and stability of closed elastic rods. Proc. Lond. Math. Soc. 79, 429–450 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Kirchhoff, G.: Ueber das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes. J. Reine Angew. Math. 56, 285–313 (1859)MathSciNetGoogle Scholar
  29. 29.
    Kmoch, P., Bonanni, U., Magnenat-Thalmann, N.: Hair simulation model for real-time environments. In: Computer Graphics International Conference, pp. 5–12. ACM, Victoria (2009)Google Scholar
  30. 30.
    Langer, J., Singer, D.: Lagrangian aspects of the Kirchhoff elastic rod. SIAM Rev. 38, 605–618 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Lefevre, B., Tayeb, F., du Peloux, L., Caron, J.F.: A 4-degree-of-freedom Kirchhoff beam model for the modeling of bending-torsion couplings in active-bending structures. Int. J. Space Struct. 32, 69–83 (2017)CrossRefGoogle Scholar
  32. 32.
    Liu, Y.Z., Zu, J.W.: Stability and bifurcation of helical equilibrium of a thin elastic rod. Acta Mech. 167, 29–39 (2004)zbMATHCrossRefGoogle Scholar
  33. 33.
    Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Cambridge University Press, Cambridge (1927)zbMATHGoogle Scholar
  34. 34.
    McMillen, T., Goriely, A.: Tendril perversion in intrinsically curved rods. J. Nonlinear Sci. 12, 241–281 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Meier, C., Popp, A., Wall, W.A.: An objective 3D large deformation finite element formulation for geometrically exact curved Kirchhoff rods. Comput. Methods Appl. Mech. Eng. 278, 445–478 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Meier, C., Popp, A., Wall, W.A.: Geometrically exact finite element formulations for slender beams: Kirchhoff–Love theory versus Simo–Reissner theory. Arch. Comput. Methods Eng. 26, 163–243 (2017)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Meier, C., Wall, W.A., Popp, A.: A unified approach for beam-to-beam contact. Comput. Methods Appl. Mech. Eng. 315, 972–1010 (2017)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Mielke, A., Holmes, P.: Spatially complex equilibria of buckled rods. Arch. Ration. Mech. Anal. 101, 319–348 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Moore, A., Healey, T.: Computation of elastic equilibria of complete Möbius bands and their stability. Math. Mech. Solids 1–29 (in press) (2018)Google Scholar
  40. 40.
    O’Reilly, O.M.:. Kirchhoff’s rod theory. In: O’Reilly, O.M. (ed.) Modeling Nonlinear Problems in the Mechanics of Strings and Rods (IMM), vol. 32, pp. 187–268. Springer, Cham (2017). CrossRefGoogle Scholar
  41. 41.
    Pai, D.K.: STRANDS: interactive simulation of thin solids using Cosserat models. Comput. Graph. Forum 21, 347–352 (2002)CrossRefGoogle Scholar
  42. 42.
    Romero, I.: The interpolation of rotations and its application to finite element models of geometrically exact rods. Comput. Mech. 34, 121–133 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Romero, I.: Formulation and performance of variational integrators for rotating bodies. Comput. Mech. 42, 825–836 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Romero, I., Arnold, M.: Computing with rotations: algorithms and applications. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics. Wiley, New York (2017)Google Scholar
  45. 45.
    Romero, I., Urrecha, M., Cyron, C.J.: A torsion-free nonlinear beam model. Int. J. Non Linear Mech. 58, 1–10 (2014)CrossRefGoogle Scholar
  46. 46.
    Schlick, T.: Modeling superhelical DNA: recent analytical and dynamic approaches. Curr. Opin. Struct. Biol. 5, 245–262 (1995)CrossRefGoogle Scholar
  47. 47.
    Shi, Y., Hearst, J.E.: The Kirchhoff elastic rod, the nonlinear Schrödinger equation, and DNA supercoiling. J. Chem. Phys. 101, 5186–5200 (1994)CrossRefGoogle Scholar
  48. 48.
    Simo, J.C.: A finite strain beam formulation. Part I. The three-dimensional dynamic problem. Comput. Methods Appl. Mech. Eng. 49, 55–70 (1985)zbMATHCrossRefGoogle Scholar
  49. 49.
    Simo, J.C., Fox, D.D.: On a stress resultant geometrically exact shell model. I. Formulation and optimal parametrization. Comput. Methods Appl. Mech. Eng. 72, 267–304 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Simo, J.C., Marsden, J.E., Krishnaprasad, P.S.: The Hamiltonian structure of nonlinear elasticity: the material and convective representations of solids, rods, and plates. Arch. Ration. Mech. Anal. 104, 125–183 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Singer, D.A.: Lectures on elastic curves and rods. AIP Conf. Proc. 1002, 3–32 (2008)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Tucker, W.R., Wang, C.: An integrated model for drill-string dynamics. J. Sound Vib. 224, 123–165 (1999)CrossRefGoogle Scholar
  53. 53.
    Valverde, J., Escalona, J.L., Domínguez, J., Champneys, A.R.: Stability and bifurcation analysis of a spinning space tether. J. Nonlinear Sci. 16, 507–542 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Wang, Z., Fratarcangeli, M., Ruimi, A., Srinivasa, A.R.: Real time simulation of inextensible surgical thread using a Kirchhoff rod model with force output for haptic feedback applications. Int. J. Solids Struct. 113–114, 192–208 (2017)CrossRefGoogle Scholar
  55. 55.
    Weiss, H.: Dynamics of geometrically nonlinear rods: I. Nonlinear Dyn. 30, 357–381 (2002)zbMATHCrossRefGoogle Scholar
  56. 56.
    Weiss, H.: Dynamics of geometrically nonlinear rods: II. Numerical methods and computational examples. Nonlinear Dyn. 30, 383–415 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Zhang, G.Y., Gao, X.L.: A non-classical Kirchhoff rod model based on the modified couple stress theory. Acta Mech. 230, 243–264 (2019)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.IMDEA Materials InstituteMadridSpain
  2. 2.Universidad Politécnica de MadridMadridSpain
  3. 3.Institute of Structural AnalysisLeibniz Universität HannoverHannoverGermany

Personalised recommendations