Advertisement

On the influence of voids on the depth of an external signal in thermoelasticity with two relaxation times

  • Manuela CariniEmail author
  • Vittorio Zampoli
Original Paper
  • 113 Downloads

Abstract

This work aims to highlight, by a series of simulations, the effect of the presence of pores in the material matrix on the transmission depth of a thermomechanical signal: two linear thermoelastic models are considered, for which the thermal response obeys a time-differential constitutive equation with two relaxation times, derived from the dual-phase lag theory. A porous material matrix, modeled on the basis of the Cowin–Nunziato theory, is compared with its counterpart without voids: this is done under hypotheses of linearity, compatible with the assumption to deal with very small spatial scales, in the order of the micrometer or nanometer. The results of such simulations are graphically presented and are completely unexpected; in the opinion of the authors, they can represent an interesting starting point for further discussions and insights.

Mathematics Subject Classification

74A15 74F10 74G55 

Notes

Acknowledgements

Vittorio Zampoli acknowledges the Italian National Group of Mathematical Physics (GNFM-INdAM) for supporting the research projects Progetto Giovani 2018 Heat-pulse propagation in FGMs and Progetto Giovani 2019 On a thermodynamically consistent reformulation of the Becker and Döring model for two-phase materials.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Shiomi, J., Maruyama, S.: Non-Fourier heat conduction in a single-walled carbon nanotube: classical molecular dynamics simulations. Phys. Rev. B 73, 205420 (2006).  https://doi.org/10.1103/PhysRevB.73.205420 CrossRefGoogle Scholar
  2. 2.
    Tzou, D.Y.: Macro- to Microscale Heat Transfer: The Lagging Behavior, 2nd edn. Wiley, Chichester (2014)CrossRefGoogle Scholar
  3. 3.
    Roy Choudhuri, S.K.: On a thermoelastic three-phase-lag model. J. Therm. Stress. 30(3), 231–238 (2007).  https://doi.org/10.1080/01495730601130919 CrossRefGoogle Scholar
  4. 4.
    Chiriţă, S., D’Apice, C., Zampoli, V.: The time differential three-phase-lag heat conduction model: thermodynamic compatibility and continuous dependence. Int. J. Heat Mass Transf. 102, 226–232 (2016).  https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.019 CrossRefGoogle Scholar
  5. 5.
    D’Apice, C., Chiriţă, S., Zampoli, V.: On the well-posedness of the time differential three-phase-lag thermoelasticity model. Arch. Mech. 68(5), 371–393 (2016)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Zampoli, V., Landi, A.: A domain of influence result about the time differential three-phase-lag thermoelastic model. J. Therm. Stress. 40(1), 108–120 (2017).  https://doi.org/10.1080/01495739.2016.1195242 CrossRefGoogle Scholar
  7. 7.
    Chiriţă, S.: On the time differential dual-phase-lag thermoelastic model. Meccanica 52(1–2), 349–361 (2017).  https://doi.org/10.1007/s11012-016-0414-2 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chiriţă, S., Ciarletta, M., Tibullo, V.: On the thermomechanical consistency of the time differential dual-phase-lag models of heat conduction. Int. J. Heat Mass Transf. 114, 277–285 (2017).  https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.071 CrossRefGoogle Scholar
  9. 9.
    Chiriţă, S.: High-order effects of thermal lagging in deformable conductors. Int. J. Heat Mass Transf. 127(Part C), 965–974 (2018).  https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.074 CrossRefGoogle Scholar
  10. 10.
    Zampoli, V., Chiriţă, S.: On the depth of a thermomechanical signal in a dual-phase lag deformable medium. In: Proceedings of the IEEE EESMS Workshop on Environmental, Energy and Structural Monitoring Systems, Article number 8405816, pp. 1–6 (2018).  https://doi.org/10.1109/EESMS.2018.8405816
  11. 11.
    Chiriţă, S., Zampoli, V.: Spatial behavior of the dual-phase-lag deformable conductors. J. Therm. Stress. 41(10–12), 1276–1296 (2018).  https://doi.org/10.1080/01495739.2018.1479205 CrossRefGoogle Scholar
  12. 12.
    Zampoli, V.: Uniqueness theorems about high-order time differential thermoelastic models. Ricerche mat. 67(2), 929–950 (2018).  https://doi.org/10.1007/s11587-018-0351-6 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Zampoli, V.: Some continuous dependence results about high-order time differential thermoelastic models. J. Therm. Stress. 41(7), 827–846 (2018).  https://doi.org/10.1080/01495739.2018.1439789 CrossRefGoogle Scholar
  14. 14.
    Magaña, A., Quintanilla, R.: On the existence and uniqueness in phase-lag thermoelasticity. Meccanica 53(1–2), 125–134 (2018).  https://doi.org/10.1007/s11012-017-0727-9 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Liu, Z., Quintanilla, R.: Time decay in dual-phase-lag thermoelasticity: critical case. Commun. Pure Appl. Anal. 17(1), 177–190 (2018).  https://doi.org/10.3934/cpaa.2018011 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Magaña, A., Miranville, A., Quintanilla, R.: On the stability in phase-lag heat conduction with two temperatures. J. Evol. Equ. 18(4), 1697–1712 (2018).  https://doi.org/10.1007/s00028-018-0457-z MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Chiriţă, S., D’Apice, C., Zampoli, V.: Spatial behavior of the steady state vibrations in a dual-phase-lag rigid conductor. J. Adv. Therm. Sci. Res. 6, 1–9 (2019).  https://doi.org/10.15377/2409-5826.2019.06.1 CrossRefGoogle Scholar
  18. 18.
    Zampoli, V.: On the increase in signal depth due to high-order effects in micro- and nanosized deformable conductors. Math. Probl. Eng. Article ID 2629012, 11 pages (2019).  https://doi.org/10.1155/2019/2629012 MathSciNetCrossRefGoogle Scholar
  19. 19.
    Bazarra, N., Copetti, M.I.M., Fernández, J.R., Quintanilla, R.: Numerical analysis of some dual-phase-lag models. Comput. Math. Appl. 77(2), 407–426 (2019).  https://doi.org/10.1016/j.camwa.2018.09.044 MathSciNetCrossRefGoogle Scholar
  20. 20.
    Bazarra, N., Bochicchio, I., Fernández, J.R., Naso, M.G.: Analysis of a contact problem involving an elastic body with dual-phase-lag. Appl. Math. Optim. (2019).  https://doi.org/10.1007/s00245-019-09574-1 CrossRefzbMATHGoogle Scholar
  21. 21.
    Bazarra, N., Campo, M., Fernández, J.R., Quintanilla, R.: Numerical analysis of a thermoelastic problem with dual-phase-lag heat conduction. Appl. Numer. Math. 140, 76–90 (2019).  https://doi.org/10.1016/j.apnum.2019.01.010 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Chiriţă, S.: On high-order approximations for describing the lagging behavior of heat conduction. Math. Mech. Solids 24(6), 1648–1667 (2019).  https://doi.org/10.1177/1081286518758356 MathSciNetCrossRefGoogle Scholar
  23. 23.
    Hu, L., Pasta, M., La Mantia, F., Cui, L., Jeong, S., Deshazer, H.D., Choi, J.W., Han, S.M., Cui, Y.: Stretchable, porous, and conductive energy textiles. Nano Lett. 10, 708–714 (2010).  https://doi.org/10.1021/nl903949m CrossRefGoogle Scholar
  24. 24.
    Anglin, E.J., Cheng, L., Freeman, W.R., Sailor, M.J.: Porous silicon in drug delivery devices and materials. Adv. Drug Deliv. Rev. 60(11), 1266–1277 (2008).  https://doi.org/10.1016/j.addr.2008.03.017 CrossRefGoogle Scholar
  25. 25.
    Rashidi, S., Esfahani, J.A., Rashidi, A.: A review on the applications of porous materials in solar energy systems. Renew. Sustain. Energy Rev. 73, 1198–1210 (2017).  https://doi.org/10.1016/j.rser.2017.02.028 CrossRefGoogle Scholar
  26. 26.
    Zampoli, V., Amendola, A. Uniqueness, continuous dependence, and spatial behavior of the solution in linear porous thermoelasticity with two relaxation times. J. Therm. Stress. (in press).  https://doi.org/10.1080/01495739.2019.1654950
  27. 27.
    Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elast. 13(2), 125–147 (1983).  https://doi.org/10.1007/BF00041230 CrossRefzbMATHGoogle Scholar
  28. 28.
    Ieşan, D.: Some theorems in the theory of elastic materials with voids. J. Elast. 15(2), 215–224 (1985).  https://doi.org/10.1007/BF00041994 MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Ieşan, D.: A theory of thermoelastic materials with voids. Acta Mech. 60(1–2), 67–89 (1986).  https://doi.org/10.1007/BF01302942 CrossRefGoogle Scholar
  30. 30.
    Ieşan, D.: Thermoelastic Models of Continua, Solid Mechanics and Its Applications, vol. 118. Kluwer Academic Publishers, Dordrecht (2004)CrossRefGoogle Scholar
  31. 31.
    Singh, J., Tomar, S.K.: Plane waves in thermo-elastic material with voids. Mech. Mater. 39(10), 932–940 (2007).  https://doi.org/10.1016/j.mechmat.2007.03.007 CrossRefGoogle Scholar
  32. 32.
    Ignaczak, J., Bialy, J.: Domain of influence in thermoelasticity with one relaxation time. J. Therm. Stress. 3(3), 391–399 (1980).  https://doi.org/10.1080/01495738008926977 CrossRefGoogle Scholar
  33. 33.
    Ignaczak, J., Carbonaro, B., Russo, R.: Domain of influence theorem in thermoelasticity with one relaxation time. J. Therm. Stress. 9(1), 79–91 (1986).  https://doi.org/10.1080/01495738608961889 MathSciNetCrossRefGoogle Scholar
  34. 34.
    Kumar, A., Kumar, R.: A domain of influence theorem for thermoelasticity with three-phase-lag model. J. Therm. Stress. 38(7), 744–755 (2015).  https://doi.org/10.1080/01495739.2015.1040311 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria per l’Ambiente e il Territorio e Ingegneria ChimicaUniversità della CalabriaArcavacata di RendeItaly
  2. 2.Dipartimento di Ingegneria dell’Informazione ed Elettrica e Matematica ApplicataUniversità di SalernoFiscianoItaly

Personalised recommendations