Advertisement

Acta Mechanica

, Volume 230, Issue 12, pp 4235–4255 | Cite as

Free vibration analysis of laminated composite conical shells reinforced with shape memory alloy fibers

  • Morteza Nekouei
  • Mehdi RaghebiEmail author
  • Meisam Mohammadi
Original Paper
  • 184 Downloads

Abstract

In the present paper, for the first time the vibration behavior of hybrid composite conical shells reinforced with shape memory alloy (SMA) fibers is investigated. The temperature-dependent properties of SMA fibers and composite are accurately considered. Using the one-dimensional constitutive law of Brinson, thermo-mechanical properties such as recovery stresses, elasticity modulus and shear modulus with uniform temperature change are calculated for SMA fibers. Love’s first approximation classical shell theory with von-Kármán type of geometrical nonlinearity is used in conjunction with Hamilton’s principle for deriving the equations of motion. A semi-analytical solution is presented so that trigonometric functions are applied in the circumferential direction, and the generalized differential quadrature method is used to discretize the equations of motion along the longitudinal direction. Finally, parametric studies are done to investigate the effects of volume fraction, pre-strain, location of SMA fibers, boundary conditions, semi-vertex angle of the cone, and temperature on the vibration characteristics of the SMA hybrid composite conical shells. It is shown that a proper utilization of SMA fibers significantly increases the fundamental frequency and vibration control of the SMA hybrid composite conical shells.

Notes

References

  1. 1.
    Lagoudas, D.C.: Shape Memory Alloys: Modeling and Engineering Applications. Springer, New York (2008)zbMATHGoogle Scholar
  2. 2.
    Rogers, C.A.: Active vibration and structural acoustic control of shape memory alloy hybrid composites: experimental results. J. Acoust. Soc. Am. 88(6), 2803–2811 (1990)CrossRefGoogle Scholar
  3. 3.
    Baz, A., Poh, S., Ro, J., Gilheany, J.: Control of the natural frequencies of nitinol-reinforced composite beams. J. Sound Vib. 185(1), 171–185 (1995)CrossRefGoogle Scholar
  4. 4.
    Lau, K.T.: Vibration characteristics of SMA composite beams with different boundary conditions. Mater. Des. 23(8), 741–749 (2002)CrossRefGoogle Scholar
  5. 5.
    Park, J.S., Kim, J.H., Moon, S.H.: Vibration of thermally post-buckled composite plates embedded with shape memory alloy fibers. Comput. Struct. 63(2), 179–188 (2004)CrossRefGoogle Scholar
  6. 6.
    Cross, W.B., Kariotis, A.H., Stimler, F.J.: Nitinol characterization study. In: NASA CR-1433 (1969)Google Scholar
  7. 7.
    Yongsheng, R., Shuangshuang, S.: Large amplitude flexural vibration of the orthotropic composite plate embedded with shape memory alloy fibers. Chin. J. Aeronaut. 20(5), 415–424 (2007)CrossRefGoogle Scholar
  8. 8.
    Li, S.R., Yu, W.S., Batra, R.C.: Free vibration of thermally pre/post-buckled circular thin plates embedded with shape memory alloy fibers. J. Therm. Stress. 33(2), 79–96 (2010)CrossRefGoogle Scholar
  9. 9.
    Shiau, L.C., Kuo, S.Y., Chang, S.Y.: Free vibration of buckled SMA reinforced composite laminates. Comput. Struct. 93(11), 2678–2684 (2011)CrossRefGoogle Scholar
  10. 10.
    Asadi, H., Bodaghi, M., Shakeri, M., Aghdam, M.M.: An analytical approach for nonlinear vibration and thermal stability of shape memory alloy hybrid laminated composite beams. Eur. J. Mech. A Solids 42, 454–468 (2013)CrossRefGoogle Scholar
  11. 11.
    Asadi, H., Bodaghi, M., Shakeri, M., Aghdam, M.M.: On the free vibration of thermally pre/post-buckled shear deformable SMA hybrid composite beams. Aerosp. Sci. Technol. 31(1), 73–86 (2013)CrossRefGoogle Scholar
  12. 12.
    Asadi, H., Bodaghi, M., Shakeri, M., Aghdam, M.M.: Nonlinear dynamics of SMA-fiber-reinforced composite beams subjected to a primary/secondary-resonance excitation. Acta Mech. 226(2), 437–455 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Asadi, H., Kiani, Y., Shakeri, M., Eslami, M.R.: Exact solution for nonlinear thermal stability of hybrid laminated composite Timoshenko beams reinforced with SMA fibers. Comput. Struct. 108, 811–822 (2014)CrossRefGoogle Scholar
  14. 14.
    Malekzadeh, K., Mozafari, A., Ghasemi, F.A.: Free vibration response of a multilayer smart hybrid composite plate with embedded SMA wires. Lat. Am. J. Solids Struct. 11(2), 279–298 (2014)CrossRefGoogle Scholar
  15. 15.
    Mahabadi, R.K., Shakeri, M., Pazhooh, M.D.: Free vibration of laminated composite plate with shape memory alloy fibers. Lat. Am. J. Solids Struct. 13(2), 314–330 (2016)CrossRefGoogle Scholar
  16. 16.
    Forouzesh, F., Jafari, A.A.: Radial vibration analysis of pseudoelastic shape memory alloy thin cylindrical shells by the differential quadrature method. Thin Walled Struct. 93, 158–168 (2015)CrossRefGoogle Scholar
  17. 17.
    Asadi, H., Kiani, Y., Aghdam, M.M., Shakeri, M.: Enhanced thermal buckling of laminated composite cylindrical shells with shape memory alloy. J. Compos. Mater. 50(2), 243–256 (2016)CrossRefGoogle Scholar
  18. 18.
    Parhi, A., Singh, B.N.: Nonlinear free vibration analysis of shape memory alloy embedded laminated composite shell panel. Mech. Adv. Mater. Struct. 24(9), 713–724 (2017)CrossRefGoogle Scholar
  19. 19.
    Salim, M., Bodaghi, M., Kamarian, S., Shakeri, M.: Free vibration analysis and design optimization of SMA/Graphite/Epoxy composite shells in thermal environments. Lat. Am. J. Solids Struct. 15(1) (2018) Google Scholar
  20. 20.
    Tanaka, K., Kobayashi, S., Sato, Y.: Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys. Int. J. Plast. 2(1), 59–72 (1986)CrossRefGoogle Scholar
  21. 21.
    Liang, C., Rogers, C.A.: One-dimensional thermomechanical constitutive relations for shape memory materials. J. Intell. Mater. Syst. Struct. 1(2), 207–234 (1990)CrossRefGoogle Scholar
  22. 22.
    Brinson, L.C.: One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J. Intell. Mater. Syst. Struct. 4(2), 229–242 (1993)CrossRefGoogle Scholar
  23. 23.
    Auricchio, F., Sacco, E.: A one-dimensional model for superelastic shape-memory alloys with different elastic properties between austenite and martensite. Int. J. Non Linear Mech. 32(6), 1101–1114 (1997)CrossRefGoogle Scholar
  24. 24.
    Brinson, L.C., Huang, M.S.: Simplifications and comparisons of shape memory alloy constitutive models. J. Intell. Mater. Syst. Struct. 7(1), 108–114 (1996)CrossRefGoogle Scholar
  25. 25.
    Liang, C.: The Constitutive Modeling of Shape Memory Alloys. Virginia Tech, Blacksburg (1990)Google Scholar
  26. 26.
    Roh, J.H., Oh, I.K., Yang, S.M., Han, J.H., Lee, I.: Thermal post-buckling analysis of shape memory alloy hybrid composite shell panels. Smart Mater. Struct. 13(6), 1337–1344 (2004)CrossRefGoogle Scholar
  27. 27.
    Chamis, C.C.: Simplified composite micromechanics equations for hygral, thermal and mechanical properties. Reinforced Plastics Composites Institute Houston Texas, NASA Technical Memorandum 83320 (1983)Google Scholar
  28. 28.
    Leissa, A.W.: Vibration of Shells, vol. 288. Scientific and Technical Information Office, National Aeronautics and Space Administration Washington (1973)Google Scholar
  29. 29.
    Civalek, Ö.: Numerical analysis of free vibrations of laminated composite conical and cylindrical shells: discrete singular convolution (DSC) approach. J. Comput. Appl. Math. 205(1), 251–271 (2007)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, New York (2004)CrossRefGoogle Scholar
  31. 31.
    Akbari, M., Kiani, Y., Eslami, M.R.: Thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports. Acta Mech. 226(3), 897–915 (2015)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Brush, D.O., Almroth, B.O.: Buckling of Bars, Plates, and Shells, vol. 394. McGraw-Hill Inc, New York (1975)zbMATHGoogle Scholar
  33. 33.
    Shu, C.: Free vibration analysis of composite laminated conical shells by generalized differential quadrature. J. Sound Vib. 194(4), 587–604 (1996)CrossRefGoogle Scholar
  34. 34.
    Shu, C.: Differential Quadrature and Its Application in Engineering. Springer, Berlin (2012)Google Scholar
  35. 35.
    Shu, C., Chen, W., Xue, H., Du, H.: Numerical study of grid distribution effect on accuracy of DQ analysis of beams and plates by error estimation of derivative approximation. Int. J. Numer. Methods Eng. 51(2), 159–179 (2001)CrossRefGoogle Scholar
  36. 36.
    Tong, L.: Free vibration of laminated conical shells including transverse shear deformation. Int. J. Solids Struct. 31(4), 443–456 (1994)CrossRefGoogle Scholar
  37. 37.
    Wu, C.P., Wu, C.H.: Asymptotic differential quadrature solutions for the free vibration of laminated conical shells. Comput. Mech. 25(4), 346–357 (2000)CrossRefGoogle Scholar
  38. 38.
    Patel, B.P., Shukla, K.K., Nath, Y.: Thermal postbuckling analysis of laminated cross-ply truncated circular conical shells. Comput. Struct. 71(1), 101–114 (2005)CrossRefGoogle Scholar
  39. 39.
    Singh, B.N., Babu, J.B.: Thermal buckling of laminated conical shells embedded with and without piezoelectric layer. J. Reinf. Plast. Compos. 28(7), 791–812 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019
corrected publication 2019

Authors and Affiliations

  • Morteza Nekouei
    • 1
  • Mehdi Raghebi
    • 1
    Email author
  • Meisam Mohammadi
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of BirjandBirjandIran
  2. 2.Department of Mechanical EngineeringVali-e-Asr University of RafsanjanRafsanjanIran

Personalised recommendations