Skip to main content
Log in

Micromorphic theory and its finite element formulation

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this work, the kinematics and basic laws of microcontinuum field theories, including micromorphic theory and micropolar theory, are introduced. Then, constitutive equations for micromorphic thermo-visco-elastic solids, heat conducting fluids, and thermal plasticity are rigorously derived. The concept of material force, which may also be named as Eshelby mechanics, is briefly introduced. The balance law of pseudo-momentum, including the detailed expression of the material forces, for the mathematical theory of micromorphic plasticity is rigorously derived. Finally, a set of finite element equations for the coupling of finite displacement, micromotion, and temperature fields is rigorously formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Eringen, A.C.: Simple micro-fluids. Int. J. Eng. Sci. 2, 205–217 (1964)

    Article  MATH  Google Scholar 

  2. Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple microelastic solids I & II. Int. J. Eng. Sci. 2(189–203), 389–404 (1964)

    Google Scholar 

  3. Eringen, A.C.: Microcontinuum Field Theories I: Foundations and Solids. Springer, New York (1999)

    Book  MATH  Google Scholar 

  4. Eringen, A.C.: Microcontinuum Field Theories II: Fluent Media. Springer, New York (2001)

    MATH  Google Scholar 

  5. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  6. Chen, Y., Lee, J.D., Eskandarian, A.: Examining physical foundation of continuum theories from viewpoint of phonon dispersion relations. Int. J. Eng. Sci. 41, 61–83 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Y., Lee, J.D., Eskandarian, A.: Atomic counterpart of micromorphic theory. Acta Mech. 161, 81–102 (2003)

    Article  MATH  Google Scholar 

  8. Chen, Y., Lee, J.D., Eskandarian, A.: Atomistic viewpoint of the applicability of microcontinuum theories. Int. J. Solids Struct. 41, 2085–2097 (2004)

    Article  MATH  Google Scholar 

  9. Eringen, A.C.: Mechanics of Continua. Robert E. Krieger Publishing Company, Melbourne, FL (1980)

    MATH  Google Scholar 

  10. Wang, C.C.: A new representation theorem for isotropic functions, part I and part II. Arch. Ration. Mech. Anal. 36, 166–223 (1970)

    Article  Google Scholar 

  11. Wang, C.C.: Corrigendum to representation theorem for isotropic functions. Arch. Ration. Mech. Anal. 43, 392–395 (1971)

    Article  Google Scholar 

  12. Lee, J.D., Chen, Y.: Constitutive relations of micromorphic thermoplasticity. Int. J. Eng. Sci. 41(3), 387–399 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Green, A.E., Naghdi, P.M.: A general theory of an elastic–plastic continuum. Arch. Ration. Mech. Anal. 18(4), 251–281 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eshelby, J.D.: The force on an elastic singularity. Philos. Trans. R. Soc. Lond. A 244, 87–112 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  15. Maugin, G.A.: Material Inhomogeneities in Elasticity. Chapman & Hall, London (1993)

    Book  MATH  Google Scholar 

  16. Maugin, G.A.: Material forces: concepts and applications. Appl. Mech. Rev. 48(5), 213–245 (1995)

    Article  Google Scholar 

  17. Nabarro, F.R.N.: Material forces and configurational forces in the interaction of elastic singularities. Proc. Royal Soc. Lond. A. Math. Phys. Sci. 1815(398) (1985). https://doi.org/10.1098/rspa.1985.0032

  18. Cherepanov, G.P.: Invariant \(\Gamma \)-integrals and some of their applications in mechanics. PMM 41, 397–410 (1977). (English trans.)

    MathSciNet  Google Scholar 

  19. Kröner, E.: Configurational and material forces in the theory of defects in ordered structures. Mater. Sci. Forum 123–125, 447–454 (1993). https://doi.org/10.4028/www.scientific.net/MSF.123-125.447

    Article  Google Scholar 

  20. Maugin, G.A., Trimarco, C.C.: Dissipation of configurational forces in defective elastic bodies. Arch. Mech. 47, 81–95 (1994)

    MATH  Google Scholar 

  21. Casal, P.: Interpretation of the rice integral in continuum mechanics. Lett. Appl. Eng. Sci. 16, 335–347 (1978)

    MathSciNet  MATH  Google Scholar 

  22. Peach, M.O., Koehler, J.S.: Forces exerted on dislocations and the stress field produced by them. Phys. Rev. 80(3), 436–439 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  23. Edelen, D.G.B.: Forces on dislocations and inhomogeneities in the gauge theory of defects. Int. J. Solids Struct. 21(7), 699–710 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zorski, H.: Force on a defect in nonlinear elastic medium. Int. J. Eng. Sci. 19(12), 1573–1579 (1981)

    Article  MATH  Google Scholar 

  25. Batra, R.C.: Force on a lattice defect in an elastic body. J. Elast. 17(1), 3–8 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pouget, J., Maugin, G.A.: Influence of an external electric field on the motion of a ferroelectric domain wall. Phys. Lett A. 109(8), 389–392 (1985)

    Article  Google Scholar 

  27. Abeyaratne, R., Knowles, J.K.: On the driving traction acting on a surface of strain discontinuity in a continuum. J. Mech. Phys. Solids 38(3), 345–360 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rice, J.R.: Path-independent integral and the approximate analysis of strain concentrations by notches and cracks. Trans. ASME J. Appl. Mech. 33, 79–385 (1968)

    Google Scholar 

  29. Cherepanov, G.P.: Configurational forces in the mechanics of a solid deformable body. PMM 49(4), 456–464 (1985). (English trans.)

    MATH  Google Scholar 

  30. Maugin, G.A.: Application of an energy-momentum tensor in nonlinear elastodynamics: pseudomomentum and Eshelby stress in solitonic elastic systems. J. Mech. Phys. Solids 40(7), 1543–1558 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lee, J.D., Chen, Y.: Material forces in micromorphic thermoelastic solids. Philos. Mag. 85, 3897–3910 (2005)

    Article  Google Scholar 

  32. Wang, X., Lee, J.D.: Micromorphic theory: a gateway to nano world. Int. J. Smart Nano Mater. 1(2), 115–135 (2010)

    Article  MathSciNet  Google Scholar 

  33. Lee, J.D., Wang, X.: Generalized micromorphic solids and fluids. Int. J. Eng. Sci. 49(12), 13781387 (2011)

    Article  MathSciNet  Google Scholar 

  34. Lee, J.D., Li, J., Zhang, Z.: Material force in micromorphic plasticity. Arch. Appl. Mech. 84(9–11), 1453–1464 (2014)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The theoretical formulation in this work is supported through the Idaho National Laboratory (INL) Laboratory Directed Research & Development (LDRD) Program under the U.S. Department of Energy Idaho Operations Office Contract DE-AC07-05ID14517.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Robert, K.P. & Lee, J.D. Micromorphic theory and its finite element formulation. Acta Mech 231, 1253–1284 (2020). https://doi.org/10.1007/s00707-019-02496-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02496-7

Navigation