Advertisement

Acta Mechanica

, Volume 230, Issue 10, pp 3571–3591 | Cite as

Nonlinear dynamic analysis of shell structures by the formulation based on a discrete shear gap

  • She Li
  • Jingfei Zhang
  • Xiangyang CuiEmail author
Original Paper
  • 63 Downloads

Abstract

In this work, a shear locking-free three-node shell element based on Mindlin–Reissner theory is presented for a nonlinear dynamic analysis including sheet metal forming. In the present formulation, only displacement and rotational degrees of freedom are utilized, and the discrete shear gap of each field node is deduced using rotations of all three field nodes in a local coordinate system by the integral from the fictitious central point to the corresponding field node, which makes it alleviate the shear locking phenomenon. In order to validate the availability in solving nonlinear dynamic problems, several benchmark problems and sheet metal forming applications are employed. The results show potentiality in application to practical problems because of the simple implementation.

Notes

Acknowledgements

The support of National Key R & D Program of China (2017YFB1002704), National Science Foundation of China (11872177), Hunan Provincial Innovation Foundation for Postgraduate of China (CX2018B202), and the China Scholarship Council (201806130094) is gratefully acknowledged.

References

  1. 1.
    Phung-Van, P., Nguyen, L.B., Tran, L.V., Dinh, T.D., Thai, C.H., Bordas, S.P.A., Abdel-Wahab, M., Nguyen-Xuan, H.: An efficient computational approach for control of nonlinear transient responses of smart piezoelectric composite plates. Int. J. Non Linear Mech. (2015).  https://doi.org/10.1016/j.ijnonlinmec.2015.06.003 CrossRefGoogle Scholar
  2. 2.
    Phung-Van, P., Tran, L.V., Ferreira, A.J.M., Nguyen-Xuan, H., Abdel-Wahab, M.: Nonlinear transient isogeometric analysis of smart piezoelectric functionally graded material plates based on generalized shear deformation theory under thermo-electro-mechanical loads. Nonlinear Dyn. (2017).  https://doi.org/10.1007/s11071-016-3085-6 CrossRefzbMATHGoogle Scholar
  3. 3.
    Valizadeh, N., Natarajan, S., Gonzalez-Estrada, O.A., Rabczuk, T., Bui, T.Q., Bordas, S.P.A.: NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter. Compos. Struct. (2013).  https://doi.org/10.1016/j.compstruct.2012.11.008 CrossRefGoogle Scholar
  4. 4.
    Pagani, M., Reese, S., Perego, U.: Computationally efficient explicit nonlinear analyses using reduced integration-based solid-shell finite elements. Comput. Methods Appl. Mech. Eng. (2014).  https://doi.org/10.1016/j.cma.2013.09.005 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cai, Y., Cui, X., Li, G., Liu, W.: A parallel finite element procedure for contact-impact problems using edge-based smooth triangular element and GPU. Comput. Phys. Commun. (2018).  https://doi.org/10.1016/j.cpc.2017.12.006 CrossRefGoogle Scholar
  6. 6.
    Sydenstricker, R.M., Landau, L.: Study of some triangular discrete Reissner–Mindlin plate and shell elements. Comput. Struct. (2000).  https://doi.org/10.1016/S0045-7949(00)00102-4 CrossRefGoogle Scholar
  7. 7.
    Batoz, J.L., Hammadi, F., Zheng, C., Zhong, W.: On the linear analysis of plates and shells using a new-16 degrees of freedom flat shell element. Comput. Struct. (2000).  https://doi.org/10.1016/S0045-7949(00)00104-8 CrossRefGoogle Scholar
  8. 8.
    Belytschko, T., Lin, J.I., Chen-Shyh, T.: Explicit algorithms for the nonlinear dynamics of shells. Comput. Methods Appl. Mech. Eng. (1984).  https://doi.org/10.1016/0045-7825(84)90026-4 CrossRefGoogle Scholar
  9. 9.
    Hale, J.S., Brunetti, M., Bordas, S.P.A., Maurini, C.: Simple and extensible plate and shell finite element models through automatic code generation tools. Comput. Struct. (2018).  https://doi.org/10.1016/j.compstruc.2018.08.001 CrossRefGoogle Scholar
  10. 10.
    Cui, X.Y., Wang, G., Li, G.Y.: A nodal integration axisymmetric thin shell model using linear interpolation. Appl. Math. Model. (2016).  https://doi.org/10.1016/j.apm.2015.09.077 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cui, X.Y., Hu, X., Wang, G., Li, G.Y.: An accurate and efficient scheme for acoustic-structure interaction problems based on unstructured mesh. Comput. Methods Appl. Mech. Eng. (2017).  https://doi.org/10.1016/j.cma.2017.01.022 MathSciNetCrossRefGoogle Scholar
  12. 12.
    Schwarze, M., Vladimirov, I.N., Reese, S.: Sheet metal forming and springback simulation by means of a new reduced integration solid-shell finite element technology. Comput. Methods Appl. Mech. Eng. (2011).  https://doi.org/10.1016/j.cma.2010.07.020 CrossRefzbMATHGoogle Scholar
  13. 13.
    Thai-Hoang, C., Nguyen-Thanh, N., Nguyen-Xuan, H., Rabczuk, T., Bordas, S.: A cell—based smoothed finite element method for free vibration and buckling analysis of shells. KSCE J. Civ. Eng. (2011).  https://doi.org/10.1007/s12205-011-1092-1 CrossRefGoogle Scholar
  14. 14.
    Nguyen-Xuan, H., Rabczuk, T., Bordas, S., Debongnie, J.F.: A smoothed finite element method for plate analysis. Comput. Methods Appl. Mech. Eng. (2008).  https://doi.org/10.1016/j.cma.2007.10.008 CrossRefzbMATHGoogle Scholar
  15. 15.
    Chai, Y., Li, W., Liu, G., Gong, Z., Li, T.: A superconvergent alpha finite element method (S\(\alpha \)FEM) for static and free vibration analysis of shell structures. Comput. Struct. (2017).  https://doi.org/10.1016/j.compstruc.2016.10.021 CrossRefGoogle Scholar
  16. 16.
    Feng, H., Cui, X.Y., Li, G.Y.: A stable nodal integration method with strain gradient for static and dynamic analysis of solid mechanics. Eng. Anal. Bound. Elem. (2016).  https://doi.org/10.1016/j.enganabound.2015.10.001 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Wang, G., Cui, X.Y., Li, G.Y.: Temporal stabilization nodal integration method for static and dynamic analyses of Reissner–Mindlin plates. Comput. Struct. (2015).  https://doi.org/10.1016/j.compstruc.2015.02.007 CrossRefGoogle Scholar
  18. 18.
    Cui, X., Li, S., Feng, H., Li, G.: A triangular prism solid and shell interactive mapping element for electromagnetic sheet metal forming process. J. Comput. Phys. (2017).  https://doi.org/10.1016/j.jcp.2017.02.014 MathSciNetCrossRefGoogle Scholar
  19. 19.
    Liu, P.W., Ji, Y.Z., Wang, Z., Qiu, C.L., Antonysamy, A.A., Chen, L.Q., Cui, X.Y., Chen, L.: Investigation on evolution mechanisms of site-specific grain structures during metal additive manufacturing. J. Mater. Process. Technol. (2018).  https://doi.org/10.1016/j.jmatprotec.2018.02.042 CrossRefGoogle Scholar
  20. 20.
    Feng, S.Z., Bordas, S.P.A., Han, X., Wang, G., Li, Z.X.: A gradient weighted extended finite element method (GW-XFEM) for fracture mechanics. Acta Mech. 230, 2385–2398 (2019).  https://doi.org/10.1007/s00707-019-02386-y MathSciNetCrossRefGoogle Scholar
  21. 21.
    Liu, P., Cui, X., Wang, G., Wang, Z., Chen, L.: An accurate and efficient scheme for linear and nonlinear analyses based on a gradient-weighted technique. Int. J. Non Linear Mech. 105, 9–19 (2018).  https://doi.org/10.1016/j.ijnonlinmec.2018.07.011 CrossRefGoogle Scholar
  22. 22.
    Chen, J., Wu, C., Yoon, S.: A stabilized conforming nodal integration for Galerkin mesh-free methods. Int. J. Numer. Meth. Eng. 0207, 435–466 (2001).  https://doi.org/10.1002/1097-0207(20010120)50
  23. 23.
    Liu, G.R., Dai, K.Y., Nguyen, T.T.: A smoothed finite element method for mechanics problems. Comput. Mech. (2007).  https://doi.org/10.1007/s00466-006-0075-4 CrossRefzbMATHGoogle Scholar
  24. 24.
    Zeng, W., Liu, G.R.: Smoothed finite element methods (S-FEM): an overview and recent developments. Arch. Comput. Methods Eng. (2018).  https://doi.org/10.1007/s11831-016-9202-3 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Chai, Y., You, X., Li, W., Huang, Y., Yue, Z., Wang, M.: Application of the edge-based gradient smoothing technique to acoustic radiation and acoustic scattering from rigid and elastic structures in two dimensions. Comput. Struct. (2018).  https://doi.org/10.1016/j.compstruc.2018.05.009 CrossRefGoogle Scholar
  26. 26.
    Zeng, W., Liu, G.R., Kitamura, Y., Nguyen-Xuan, H.: A three-dimensional ES-FEM for fracture mechanics problems in elastic solids. Eng. Fract. Mech. (2013).  https://doi.org/10.1016/j.engfracmech.2013.10.017 CrossRefGoogle Scholar
  27. 27.
    Zeng, W., Larsen, J.M., Liu, G.R.: Smoothing technique based crystal plasticity finite element modeling of crystalline materials. Int. J. Plast. (2014).  https://doi.org/10.1016/j.ijplas.2014.09.007 CrossRefGoogle Scholar
  28. 28.
    Wu, F., Zeng, W., Yao, L.Y., Liu, G.R.: A generalized probabilistic edge-based smoothed finite element method for elastostatic analysis of Reissner–Mindlin plates. Appl. Math. Model. (2018).  https://doi.org/10.1016/j.apm.2017.09.005 MathSciNetCrossRefGoogle Scholar
  29. 29.
    Li, S., Cui, X., Feng, H., Wang, G.: An electromagnetic forming analysis modelling using nodal integration axisymmetric thin shell. J. Mater. Process. Technol. (2017).  https://doi.org/10.1016/j.jmatprotec.2017.01.028 CrossRefGoogle Scholar
  30. 30.
    Wang, G., Cui, X.Y., Feng, H., Li, G.Y.: A stable node-based smoothed finite element method for acoustic problems. Comput. Methods Appl. Mech. Eng. (2015).  https://doi.org/10.1016/j.cma.2015.09.005 MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Nguyen-Xuan, H., Rabczuk, T., Nguyen-Thanh, N., Nguyen-Thoi, T., Bordas, S.: A node-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner–Mindlin plates. Comput. Mech. (2010).  https://doi.org/10.1007/s00466-010-0509-x MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Feng, H., Cui, X., Li, G.: A stable nodal integration method for static and quasi-static electromagnetic field computation. J. Comput. Phys. (2017).  https://doi.org/10.1016/j.jcp.2017.02.022 MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Nguyen-Thanh, N., Nguyen-Xuan, H., Bordas, S.P.A., Rabczuk, T.: Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids. Comput. Methods Appl. Mech. Eng. (2011).  https://doi.org/10.1016/j.cma.2011.01.018 MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Nguyen-Xuan, H., Tran, L.V., Thai, C.H., Kulasegaram, S., Bordas, S.P.A.: Isogeometric analysis of functionally graded plates using a refined plate theory. Compos. Part B Eng. (2014).  https://doi.org/10.1016/j.compositesb.2014.04.001 CrossRefGoogle Scholar
  35. 35.
    Dornisch, W., Müller, R., Klinkel, S.: An efficient and robust rotational formulation for isogeometric Reissner–Mindlin shell elements. Comput. Methods Appl. Mech. Eng. (2016).  https://doi.org/10.1016/j.cma.2016.01.018 MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Sobota, P.M., Dornisch, W., Müller, R., Klinkel, S.: Implicit dynamic analysis using an isogeometric Reissner–Mindlin shell formulation. Int. J. Numer. Methods Eng. (2017).  https://doi.org/10.1002/nme.5429 MathSciNetCrossRefGoogle Scholar
  37. 37.
    Li, W., Gong, Z.X., Chai, Y.B., Cheng, C., Li, T.Y., Zhang, Q.F., Wang, M.S.: Hybrid gradient smoothing technique with discrete shear gap method for shell structures. Comput. Math. Appl. (2017).  https://doi.org/10.1016/j.camwa.2017.06.047 MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Dornisch, W., Müller, R., Klinkel, S.: An efficient and robust rotational formulation for isogeometric Reissner–Mindlin shell elements. Comput. Methods Appl. Mech. Eng. (2016).  https://doi.org/10.1016/j.cma.2016.01.018 MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Choo, Y.S., Choi, N., Lee, B.C.: A new hybrid-Trefftz triangular and quadrilateral plate element. Appl. Math. Model. (2010).  https://doi.org/10.1016/j.apm.2009.03.022 MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Li, Q., Soric, J., Jarak, T., Atluri, S.N.: A locking-free meshless local Petrov–Galerkin formulation for thick and thin plates. J. Comput. Phys. (2005).  https://doi.org/10.1016/j.jcp.2005.02.008 CrossRefzbMATHGoogle Scholar
  41. 41.
    Flores, F.G.: A “Prism” solid element for large strain shell analysis. Comput. Methods Appl. Mech. Eng. (2013).  https://doi.org/10.1016/j.cma.2012.10.001 MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Flores, F.G.: A simple reduced integration hexahedral solid-shell element for large strains. Comput. Methods Appl. Mech. Eng. (2016).  https://doi.org/10.1016/j.cma.2016.01.013 MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Bathe, K.J., Iosilevich, A., Chapelle, D.: Evaluation of the MITC shell elements. Comput. Struct. (2000).  https://doi.org/10.1016/S0045-7949(99)00214-X CrossRefGoogle Scholar
  44. 44.
    Flores, F.G.: Development of a non-linear triangular prism solid-shell element using ANS and EAS techniques. Comput. Methods Appl. Mech. Eng. (2013).  https://doi.org/10.1016/j.cma.2013.07.014 MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Sze, K.Y., Zhu, D.: A quadratic assumed natural strain curved triangular shell element. Comput. Methods Appl. Mech. Eng. (1999).  https://doi.org/10.1016/S0045-7825(98)00277-1 CrossRefzbMATHGoogle Scholar
  46. 46.
    De César Sá, J.M.A., Natal Jorge, R.M., Fontes Valente, R.A., Almeida Areias, P.M.: Development of shear locking-free shell elements using an enhanced assumed strain formulation. Int. J. Numer. Methods Eng. (2002).  https://doi.org/10.1002/nme.360 CrossRefzbMATHGoogle Scholar
  47. 47.
    Büchter, N., Ramm, E., Roehl, D.: Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept. Int. J. Numer. Methods Eng. (1994).  https://doi.org/10.1002/nme.1620371504 CrossRefzbMATHGoogle Scholar
  48. 48.
    Bathe, K.-J., Dvorkin, E.N.: A formulation of general shell elements—the use of mixed interpolation of tensorial components. Int. J. Numer. Methods Eng. (1986).  https://doi.org/10.1002/nme.1620220312 CrossRefzbMATHGoogle Scholar
  49. 49.
    Ko, Y., Lee, P.S., Bathe, K.J.: A new 4-node MITC element for analysis of two-dimensional solids and its formulation in a shell element. Comput. Struct. (2017).  https://doi.org/10.1016/j.compstruc.2017.07.003 CrossRefGoogle Scholar
  50. 50.
    Chapelle, D., Suarez, I.P.: Detailed reliability assessment of triangular MITC elements for thin shells. Comput. Struct. (2008).  https://doi.org/10.1016/j.compstruc.2008.06.001 CrossRefGoogle Scholar
  51. 51.
    Lee, P.S., Bathe, K.J.: Development of MITC isotropic triangular shell finite elements. Comput. Struct. (2004).  https://doi.org/10.1016/j.compstruc.2004.02.004 CrossRefGoogle Scholar
  52. 52.
    Bletzinger, K.U., Bischoff, M., Ramm, E.: Unified approach for shear-locking-free triangular and rectangular shell finite elements. Comput. Struct. (2000).  https://doi.org/10.1016/S0045-7949(99)00140-6 CrossRefGoogle Scholar
  53. 53.
    Nguyen-Thanh, N., Rabczuk, T., Nguyen-Xuan, H., Bordas, S.: An alternative alpha finite element method with discrete shear gap technique for analysis of isotropic Mindlin–Reissner plates. Finite Elem. Anal. Des. (2011).  https://doi.org/10.1016/j.finel.2011.01.004 CrossRefzbMATHGoogle Scholar
  54. 54.
    Nguyen-Xuan, H., Liu, G.R., Thai-Hoang, C., Nguyen-Thoi, T.: An edge-based smoothed finite element method (ES-FEM) with stabilized discrete shear gap technique for analysis of Reissner–Mindlin plates. Comput. Methods Appl. Mech. Eng. (2009).  https://doi.org/10.1016/j.cma.2009.09.001 CrossRefzbMATHGoogle Scholar
  55. 55.
    Phung-Van, P., Nguyen-Thoi, T., Le-Dinh, T., Nguyen-Xuan, H.: Static and free vibration analyses and dynamic control of composite plates integrated with piezoelectric sensors and actuators by the cell-based smoothed discrete shear gap method (CS-FEM-DSG3). Smart Mater. Struct. (2013).  https://doi.org/10.1088/0964-1726/22/9/095026 CrossRefGoogle Scholar
  56. 56.
    Natarajan, S., Ferreira, A.J.M., Bordas, S., Carrera, E., Cinefra, M., Zenkour, A.M.: Analysis of functionally graded material plates using triangular elements with cell-based smoothed discrete shear gap method. Math. Probl. Eng. (2014).  https://doi.org/10.1155/2014/247932 MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Cui, X.Y., Tian, L.: A central point-based discrete shear gap method for plates and shells analysis using triangular elements. Int. J. Appl. Mech. (2017).  https://doi.org/10.1142/S1758825117500557 CrossRefGoogle Scholar
  58. 58.
    Simo, J.C., Taylor, R.L.: A return mapping algorithm for plane stress elastoplasticity. Int. J. Numer. Methods Eng. (1986).  https://doi.org/10.1002/nme.1620220310 MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Simo, J.C., Hughes, T.J.R.: Computational Inelasticity, vol. 7. Springer (2006).  https://doi.org/10.1007/B98904
  60. 60.
    Morino, L., Leech, J.W., Witmer, E.A.: An improved numerical calculation technique for large elastic-plastic transient deformations of thin shells: part 2—evaluation and applications. J. Appl. Mech. (2010).  https://doi.org/10.1115/1.3408793 CrossRefzbMATHGoogle Scholar
  61. 61.
    Makinouchi, A., Nakamachi, E., Oñate, E., Wagoner, R.: In: Proceedings of the International Conference NUMISHEET’93 (1993)Google Scholar
  62. 62.
    Flores, F.G., Oñate, E.: A basic thin shell triangle with only translational DOFs for large strain plasticity. Int. J. Numer. Methods Eng. (2001).  https://doi.org/10.1002/nme.147 CrossRefzbMATHGoogle Scholar
  63. 63.
    Lee, S.W., Yoon, J.W., Yang, D.Y.: Comparative investigation into the dynamic explicit and the static implicit method for springback of sheet metal stamping. Eng. Comput. (Swansea, Wales) 1, 2 (1999).  https://doi.org/10.1108/02644409910266494 CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyHunan UniversityChangshaPeople’s Republic of China

Personalised recommendations