Acta Mechanica

, Volume 230, Issue 10, pp 3439–3456 | Cite as

Wave boundary control method for vibration suppression of large net structures

  • Shilei Zuo
  • Yang Liu
  • Kai ZhangEmail author
  • Gengkai Hu
Original Paper


Large net structures used in engineering can easily get into vibration under external excitations; however, the corresponding vibration control strategy still remains challenging. In this paper, a wave boundary control (WBC) strategy is proposed for the vibration suppression of large net structures. The stability of the controlled structures is confirmed by using inverse Fourier transform, transfer function analysis, and numerical simulation. When WBC controllers are set at all boundaries and excitations come from the boundaries, dynamic responses for all the strings of the net structures can quickly reduce to zero without any residual vibration. The effects of different observations, controls, and distributions of sensors on the control laws are discussed. As an application, a method for reducing the number of controllers for large net structures is finally proposed. The research provides theoretical guidance for vibration control of large net structures.



The authors thank Xinwei Xu for the help in the theoretical work. This work was supported by the National Natural Science Foundation of China [Grant Nos. 11290153 and 11672037].

Author contributions KZ proposed the key idea of this paper. SLZ and KZ developed the analytical method and carried out the numerical computation. YL assisted with the building of the numerical program. GKH assisted with discussing the results. SLZ, KZ, and GKH contributed to the writing of the paper.


  1. 1.
    Tibert, G.: Deployable Tensegrity Structures for Space Applications. Royal Institute of Technology, Stockholm (2002)Google Scholar
  2. 2.
    Zhang, Y., Li, N., Yang, G., Ru, W.: Dynamic analysis of the deployment for mesh reflector deployable antennas with the cable-net structure. Acta Astronaut. 131, 182–189 (2017)CrossRefGoogle Scholar
  3. 3.
    Zhang, W., Liu, T., Xi, A., Wang, Y.N.: Resonant responses and chaotic dynamics of composite laminated circular cylindrical shell with membranes. J. Sound Vib. 423, 65–99 (2018)CrossRefGoogle Scholar
  4. 4.
    Hu, H., Tian, Q., Zhang, W., Jin, D., Hu, G., Song, Y.: Nonlinear dynamics and control of large deployable space structures composed of trusses and meshes. Adv. Mech. 43, 390–414 (2013)Google Scholar
  5. 5.
    Fuller, C.R., Elliott, S.J., Nelson, P.A.: Active Control of Vibration. Academic Press, London (1996)CrossRefGoogle Scholar
  6. 6.
    Inman, D.J.: Control of Vibrations. Wiley, New York (2006)CrossRefGoogle Scholar
  7. 7.
    Moshrefi-Torbati, M., Forrester, J.A., Forrester, A.I.J., Keane, A.J., Brennan, M.J., Elliott, S.J.: Novel active and passive anti-vibration mountings. J. Sound Vib. 331, 1532–1541 (2012)CrossRefGoogle Scholar
  8. 8.
    Gawronski, W.K.: Advanced Structural Dynamics and Active Control of Structures. Springer, New York (1998)CrossRefGoogle Scholar
  9. 9.
    Wang, Z., Li, T.: Optimal Piezoelectric sensor/actuator placement of cable net structures using H2-norm measures. J. Vib. Control. 20, 1257–1268 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Liu, F., Jin, D., Wen, H.: Optimal vibration control of curved beams using distributed parameter models. J. Sound Vib. 384, 15–27 (2016)CrossRefGoogle Scholar
  11. 11.
    Mace, B.R.: Wave reflection and transmission in beams. J. Sound Vib. 97, 237–246 (1984)CrossRefGoogle Scholar
  12. 12.
    Mace, B.R.: Active control of flexural vibrations. J. Sound Vib. 114, 253–270 (1987)CrossRefGoogle Scholar
  13. 13.
    Flotow, A.H.Von: Traveling wave control for large spacecraft structures. J. Guid. Control Dyn. 9, 462–468 (1986)CrossRefGoogle Scholar
  14. 14.
    Tanaka, N., Kikushima, Y.: Active wave control of a flexible beam (Proposition of the active sink method). JSME Int. J. 34, 159–167 (1991)Google Scholar
  15. 15.
    Tanaka, N., Kikushima, Y.: Flexural wave control of flexible beam: fundamental characteristics of an active sink system and its verification. Trans. Jpn. Soc. Mech. Eng. Ser C 56(530), 2575–2582 (1990) Google Scholar
  16. 16.
    Spadoni, A., Ruzzene, M., Cunefare, K.: Vibration and wave propagation control of plates with periodic arrays of shunted piezoelectric patches. J. Intell. Mater. Syst. Struct. 20, 979–990 (2009)CrossRefGoogle Scholar
  17. 17.
    Wu, Z.J., Li, F.M.: Spectral element method and its application in analysing the vibration band gap properties of two-dimensional square lattices. J. Vib. Control. 22, 710–721 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Fujii, H.A., Watanabe, T., Taira, W., Trivailo, P.: An analysis of vibration and wave-absorbing control of tether systems. AIAA Guidance, Navigation, and Control Conference and Exhibit. AIAA2001-4033 (2001)Google Scholar
  19. 19.
    Wang, Z., Li, T.: Linear dynamic analysis and active control of space prestressed taut cable net structures using wave scattering method. Struct. Control Heal. Monit. 23, 783–798 (2016)CrossRefGoogle Scholar
  20. 20.
    Meirovitch, L., Baruh, H.: On the problem of observation spillover in self-adjoint distributed-parameter systems. J. Optim. Theory Appl. 39, 269–291 (1983)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Logan, J.D.: Applied Mathematics. Wiley, New Jersey (2006)zbMATHGoogle Scholar
  22. 22.
    O’Connor, W.J., Zhu, M.: Boundary-controlled travelling and standing waves in cascaded lumped systems. Mech. Syst. Signal Process. 39, 119–128 (2013)CrossRefGoogle Scholar
  23. 23.
    Habibi, H., O’Connor, W.J.: Wave-based control of planar motion of beam-like mass-spring arrays. Wave Motion. 72, 317–330 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kreuzer, E., Steidl, M.: Controlling torsional vibrations of drill strings via decomposition of traveling waves. Arch. Appl. Mech. 82, 515–531 (2012)CrossRefGoogle Scholar
  25. 25.
    Rad, H.K., Salarieh, H., Alasty, A., Vatankhah, R.: Boundary control of flexible satellite vibration in planar motion. J. Sound Vib. 432, 549–568 (2018)CrossRefGoogle Scholar
  26. 26.
    Krstic, M., Smyshlyaev, A.: Boundary Control of PDEs: A Course on Backstep. SIAM, Philadelphia (2008)CrossRefGoogle Scholar
  27. 27.
    Wang, J., Tang, S., Pi, Y., Krstic, M.: Automatica Exponential regulation of the anti-collocatedly disturbed cage in a wave PDE-modeled ascending cable elevator. Automatica 95, 122–136 (2018)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Wang, J., Pi, Y., Krstic, M.: Automatica Balancing and suppression of oscillations of tension and cage in dual-cable mining elevators. Automatica 98, 223–238 (2018)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Zhao, Z., Wang, X., Zhang, C., Liu, Z., Yang, J.: Neural network based boundary control of a vibrating string system with input deadzone. Neurocomputing 275, 1021–1027 (2018)CrossRefGoogle Scholar
  30. 30.
    Zhao, Z., Shi, J., Lan, X., Wang, X., Yang, J.: Adaptive neural network control of a flexible string system with non-symmetric dead-zone and output constraint. Neurocomputing 283, 1–8 (2018)CrossRefGoogle Scholar
  31. 31.
    Zhao, Z., Liu, Z., Li, Z., Wang, N., Yang, J.: Control design for a vibrating flexible marine riser system. J. Frankl. Inst. 354, 8117–8133 (2017)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Zhao, Z., He, X., Ren, Z., Wen, G.: Boundary adaptive robust control of a flexible riser system with input nonlinearities. IEEE Trans. Syst. Man Cybern. Syst. (2018). CrossRefGoogle Scholar
  33. 33.
    Zhao, Z., He, X., Member, S., Ren, Z., Wen, G.: Output feedback stabilization for an axially moving system. IEEE Trans. Syst. Man, Cybern. Syst. (2018).
  34. 34.
    Liu, Y., Zhang, K., Zhang, W.Z., Meng, X.Y.: Wave-based vibration control of large cable net structures. Wave Motion. 77, 139–155 (2018)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Guo, B., Shao, Z.: Stabilization of an abstract second order system with application to wave equations under non-collocated control and observations. Syst. Control Lett. 58, 334–341 (2009)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Tan, C.A., Ying, S.: Active wave control of the axially moving string: theory and experiment. J. Sound Vib. 236, 861–880 (2000)CrossRefGoogle Scholar
  37. 37.
    Zingoni, A.: An efficient computational scheme for the vibration analysis of high tension cable nets. J. Sound Vib. 189, 55–75 (1996)CrossRefGoogle Scholar
  38. 38.
    Elmore, W.C., Heald, M.a, Roelofs, L.: Physics of Waves. McGraw-Hill, Cambridge (1969)Google Scholar
  39. 39.
    Xu, X., Zuo, S., Zhang, K., Hu, G.: Wave-based transfer matrix method for dynamic response of large net structures. J. Sound Vib. 433, 265–286 (2018)CrossRefGoogle Scholar
  40. 40.
    Doyle, J.F.: Wave Propagation in Structures. Springer, Berlin (1989)CrossRefGoogle Scholar
  41. 41.
    Kovacic, I., Brennan, M.J.: On the use of two classical series expansion methods to determine the vibration of harmonically excited pure cubic oscillators. Phys. Lett. A. 372, 4028–4032 (2008)CrossRefGoogle Scholar
  42. 42.
    Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7, 159–193 (2010)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Wang, L., Dongxu, L., Jianping, J.: General mesh configuration design approach for large cable-network antenna reflectors. J. Struct. Eng. 140, 04013051 (2014)CrossRefGoogle Scholar
  44. 44.
    Liu, W., Lia, D.X., Jiang, J.P.: Mesh topological form design and geometrical configuration generation for cable-network antenna reflector structures. Struct. Eng. Mech. 45, 407–418 (2013)CrossRefGoogle Scholar
  45. 45.
    Schek, H.J.: The force density method for form finding and computation of general networks. Comput. Methods Appl. Mech. Eng. 3, 115–134 (1974)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Aerospace EngineeringBeijing Institute of TechnologyBeijingChina

Personalised recommendations