Acta Mechanica

, Volume 230, Issue 8, pp 2963–2978 | Cite as

Moving frames for Lie symmetries reduction of nonholonomic systems

  • Cláudio H. C. Costa BasquerottoEmail author
  • Adrián Ruiz
  • Edison Righetto
  • Samuel da Silva
Original Paper


Given a Lie group of finite-dimensional transformations acting on a manifold, there is always an action known as a long-acting group action. This action describes the fundamental basis of the Lie theory connecting groups of symmetry in differential equations. Differential invariants emerge as constants of the action of the prolongation of a group. Élie Cartan extended this in the twentieth century involving the geometry of the action of this group, grounding the so-called moving frame theory. With this theory, various applications are possible and detailed in the literature, such as symmetries of variational problems, conservation laws, invariant differential forms, and group invariant solutions. In order to demonstrate the approach, two nonholonomic constrained mechanical systems are exemplified to obtain either the general closed-solution in explicit form, when possible, or an order reduction provided by the Lie symmetries via moving frames. The first example is a coin with mass m rolling without slipping and takes on an inclined plane (xy) with angle \(\alpha \) and nonlinear constraint. The second example is a Chetaev type described by a dog pursuing a man in a plane surface with a nonholonomic restriction. A full detailed analysis is addressed to define the Lie symmetries and the corresponding moving frames obtained in both examples.



The authors are grateful to the financial support provided by National Council for Scientific and Technological Development (CNPq - Brazil) in the Grant Numbers 404463/2016-9, 307520/2016-1 and 426050/2018-5. A. Ruiz acknowledges the financial support from the Ministry of Education, Culture, and Sport of Spain (FPU Grant FPU15/02872) as well as the financial support from the University of Cádiz and Ministerio de Ciencia, Innovación y Universidades by means of the projects PR2017-090 and PGC2018-101514-B-I00, respectively, and from Grupo de investigación de la Junta de Andalucía FQM 377. Additionally, the authors would like to thank the anonymous reviewers and the Associate Editor for their relevant comments and useful suggestions.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.


  1. 1.
    Arai, H., Tanie, K., Shiroma, N.: Nonholonomic control of a three-DOF planar underactuated manipulator. IEEE Trans. Robot. Autom. 14(5), 681–695 (1998)zbMATHCrossRefGoogle Scholar
  2. 2.
    Astolfi, A.: Discontinuous control of nonholonomic systems. Syst. Control Lett. 27(1), 37–45 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bagderina, Y.Y.: Symmetries and invariants of the systems of two linear second-order ordinary differential equations. Commun. Nonlinear Sci. Numer. Simul. 19(10), 3513–3522 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Basquerotto, C.H.C.C., Righetto, E., Silva, S.D.: Applications of the Lie symmetries to complete solution of a bead on a rotating wire hoop. J. Braz. Soc. Mech. Sci. Eng. 40(2), 48 (2018)CrossRefGoogle Scholar
  5. 5.
    Bates, L., Śniatycki, J.: Nonholonomic reduction. Rep. Math. Phys. 32(1), 99–115 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Batterman, R.W.: Falling cats, parallel parking, and polarized light. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 34(4), 527–557 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Baumann, G.: Symmetry Analysis of Differential Equations with Mathematica, 1st edn. Springer, Berlin (2000)zbMATHCrossRefGoogle Scholar
  8. 8.
    Bazin, P.L., Boutin, M.: Structure from motion: theoretical foundations of a novel approach using custom built invariants. Comput. Vis. Pattern Recognit. (2002)Google Scholar
  9. 9.
    Bloch, A.M.: Stabilizability of nonholonomic control systems. Automatica 28(2), 431–435 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Murray, R.M.: Nonholonomic mechanical systems with symmetry. Arch. Ration. Mech. Anal. 136(1), 21–99 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Bluman, G.: Simplifying the form of Lie groups admitted by a given differential equation. J. Math. Anal. Appl. 145(1), 52–62 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Bluman, G., Anco, S.: Symmetry and Integration Methods for Differential Equations, vol. 154. Springer Science & Business Media, Berlin (2008)zbMATHGoogle Scholar
  13. 13.
    Bluman, G.: Symmetries and Differential Equations. Applied Mathematical Sciences 81. Springer, New York (1989)CrossRefGoogle Scholar
  14. 14.
    Bocharov, A., Shchik, I.K., Vinogradov, A.M.: Symmetries and Conservation Laws for Differential Equations of Mathematical Physics. American Mathematical Society, Providence, RI (1999)CrossRefGoogle Scholar
  15. 15.
    Brdička, M., Hladík, A.: Theoretical Mechanics (in Czech). Academia, San Francisco (1987)zbMATHGoogle Scholar
  16. 16.
    Cai, P.P., Fu, J.L., Guo, Y.X.: Lie symmetries and conserved quantities of the constraint mechanical systems on time scales. Rep. Math. Phys. 79(3), 279–298 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Cantwell, B.J.: Introduction to Symmetry Analysis. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  18. 18.
    Chhay, M., Hamdouni, A.: A new construction for invariant numerical schemes using moving frames. Comptes Rendus Mécanique 338(2), 97–101 (2010)zbMATHCrossRefGoogle Scholar
  19. 19.
    Desai, J.P., Ostrowski, J.P., Kumar, V.: Modeling and control of formations of nonholonomic mobile robots. IEEE Trans. Robot. Autom. 17(6), 905–908 (2001)CrossRefGoogle Scholar
  20. 20.
    Dimas, S., Tsoubelis, D.: Sym: a new symmetry-finding package for Mathematica. In: Proceedings of the 10th International Conference in Modern Group Analysis, pp. 64–70 (2004)Google Scholar
  21. 21.
    Divelbiss, A.W., Wen, J.T.: A path space approach to nonholonomic motion planning in the presence of obstacles. IEEE Trans. Robot. Autom. 13(3), 443–451 (1997)CrossRefGoogle Scholar
  22. 22.
    de Wit, C.C., Sordalen, O.J.: Exponential stabilization of mobile robots with nonholonomic constraints. IEEE Trans. Autom. Control 37(11), 1791–1797 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Erdmann, K., Wildon, M.J.: Introduction to Lie Algebras, 1st edn. Springer, London (2006). No. 1 in 1615-2085zbMATHCrossRefGoogle Scholar
  24. 24.
    Esen, O., de Leon, M., Morales, V.M.J., Sardon, C.: Reduction of a Hamilton–Jacobi equation for nonholonomic systems. arXiv preprint arXiv:1810.04962 (2018)
  25. 25.
    Feng, L.L., Tian, S.F., Zhang, T.T., Zhou, J.: Lie symmetries, conservation laws and analytical solutions for two-component integrable equations. Chin. J. Phys. 55(3), 996–1010 (2017)CrossRefGoogle Scholar
  26. 26.
    Fengxiang, M., Runheng, W., Yongfa, Z.: Lie symmetries and conserved quantities of nonholonomic systems of non Chetaev’s type 1. Acta Mech. Sin. 4 (1998)Google Scholar
  27. 27.
    Goldstein, H.: Classical Mechanics. Pearson Education India, London (1965)zbMATHGoogle Scholar
  28. 28.
    Gonçalves, T.M.N., Mansfield, E.L.: On moving frames and Noether’s conservation laws. Stud. Appl. Math. 128(1), 1–29 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Haddout, S.: A practical application of the geometrical theory on fibered manifolds to an autonomous bicycle motion in mechanical system with nonholonomic constraints. J. Geom. Phys. 123, 495–506 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Haug, E.J.: Computer-Aided Kinematics and Dynamics of Mechanical Systems, vol. I, 1st edn. Alyn and Bacon, Needham Height, MA (1989). Basic methdosGoogle Scholar
  31. 31.
    Holm, D.D.: Geometry, Mechanics, and Dynamics, Chap. Euler–Poincaré Dynamics of Perfect Complex Fluids, pp. 169–180. Springer, New York, NYD (2002)Google Scholar
  32. 32.
    Hoskins, J.G., Bluman, G.: Higher order symmetries and integrating factors for ordinary differential equations. J. Math. Anal. Appl. 435(1), 133–161 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Imura, J.I., Kobayashi, K., Yoshikawa, T.: Nonholonomic control of 3 link planar manipulator with a free joint. In: Proceedings of 35th IEEE Conference on Decision and Control, vol. 2, pp. 1435–1436 (1996)Google Scholar
  34. 34.
    Kane, T., Scher, M.: A dynamical explanation of the falling cat phenomenon. Int. J. Solids Struct. 5(7), 663–670 (1969)CrossRefGoogle Scholar
  35. 35.
    Kochetov, B.A.: Lie group symmetries and Riemann function of Klein–Gordon–Fock equation with central symmetry. Commun. Nonlinear Sci. Numer. Simul. 19(6), 1723–1728 (2014)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Koiller, J.: Reduction of some classical non-holonomic systems with symmetry. Arch. Ration. Mech. Anal. 118(2), 113–148 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Laumond, J.P., Jacobs, P.E., Taix, M., Murray, R.M.: A motion planner for nonholonomic mobile robots. IEEE Trans. Robot. Autom. 10(5), 577–593 (1994)CrossRefGoogle Scholar
  38. 38.
    Lemos, N.A.: Mecânica analítica. Editora Livraria da Física (2007)Google Scholar
  39. 39.
    Lemos, N.A.: Analytical Mechanics. Cambridge University Press, Cambridge (2018)zbMATHCrossRefGoogle Scholar
  40. 40.
    Li, Z., Canny, J.F.: Nonholonomic Motion Planning, vol. 192. Springer Science & Business Media, Berlin (2012)zbMATHGoogle Scholar
  41. 41.
    Lie, S.: Über die Integration durch bestimmte Integrale von einer Classe linearer partieller Differentialgleichungen. Arch. Math. 3(6), 328–368 (1881)zbMATHGoogle Scholar
  42. 42.
    Lutzky, M.: Dynamical symmetries and conserved quantities. J. Phys. A: Math. Gen. 12(7), 973 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Mahomed, F., Leach, P.: Symmetry Lie algebras of nth order ordinary differential equations. J. Math. Anal. Appl. 151(1), 80–107 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems. Springer Publishing Company Incorporated, Berlin (2010)zbMATHGoogle Scholar
  45. 45.
    Mei, F.X.: Lie symmetries and conserved quantities of constrained mechanical systems. Acta Mech. 141(3–4), 135–148 (2000)zbMATHCrossRefGoogle Scholar
  46. 46.
    Nakamura, Y., Mukherjee, R.: Nonholonomic path planning of space robots via a bidirectional approach. IEEE Trans. Robot. Autom. 7(4), 500–514 (1991)CrossRefGoogle Scholar
  47. 47.
    Noether, E.: Invariante Variationsprobleme, pp. 235–257. Nachr. d. König. Gesellsch. d. Wiss. zu Göttingen, Math.-phys. Klasse (1918)Google Scholar
  48. 48.
    Olver, P.J.: Applications of Lie Groups to Differential Equations, 2nd edn, p. 107. Springer, New York (1986)zbMATHCrossRefGoogle Scholar
  49. 49.
    Olver, P.J.: Moving frames and singularities of prolonged group actions. Sel. Math. 6(1), 41 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Olver, P.J.: Moving frames. J. Symb. Comput. 36(3), 501–512 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Olver, P.J.: Modern developments in the theory and applications of moving frames. Lond. Math. Soc. Impact 150 Stories 1, 14–50 (2015)Google Scholar
  52. 52.
    Olver, P.J., Pohjanpelto, J.: Moving frames for Lie pseudo-groups. Can. J. Math 60(6), 1336–1386 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Schaft, A.V.D., Maschke, B.: On the Hamiltonian formulation of nonholonomic mechanical systems. Rep. Math. Phys. 34(2), 225–233 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Strogatz, S.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Studies in Nonlinearity. Westview Press, Boulder (2014)Google Scholar
  55. 55.
    Swaczyna, M.: Several examples of nonholonomic mechanical systems. Commun. Math. 19(1), 27–56 (2011)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Geociências e Engenharias, Faculdade de Engenharia MecânicaUniversidade Federal do Sul e Sudeste do Pará - UNIFESSPAMarabáBrasil
  2. 2.Department of MathematicsUniversidad de Cádiz - UCAPuerto RealSpain
  3. 3.Departamento de Matemática, Faculdade de Engenharia de Ilha SolteiraUniversidade Estadual Paulista - UNESPIlha SolteiraBrasil
  4. 4.Departamento de Engenharia Mecânica, Faculdade de Engenharia de Ilha SolteiraUniversidade Estadual Paulista - UNESPIlha SolteiraBrasil

Personalised recommendations