Advertisement

Aifantis versus Lam strain gradient models of Bishop elastic rods

  • R. BarrettaEmail author
  • S. Ali Faghidian
  • F. Marotti de Sciarra
Original Paper
  • 5 Downloads

Abstract

In this paper, the size-dependent static behavior of Bishop rods is investigated by Lam and Aifantis strain gradient formulations of elasticity. Appropriate constitutive boundary conditions are established for both the theories by making recourse to a variational approach. Unlike contributions of literature, no higher-order kinematic and static boundary conditions, which have not a clear physical meaning, are required to close the relevant gradient problems. The proposed methodology leads to mathematically well-posed elastostatic problems and is illustrated by examining size effects in selected thick rods of nanotechnological interest. Exact solutions of Bishop nano-rods are detected for a variety of loading systems and kinematic boundary conditions. Peculiar properties, merits, and implications of both the strain gradient formulations, equipped with the proper boundary conditions, are illustrated and commented. The outcomes can be useful for the design and optimization of rod-like thick components of nanoelectromechanical systems.

Notes

References

  1. 1.
    Acierno, S., Barretta, R., Luciano, R., Marotti de Sciarra, F., Russo, P.: Experimental evaluations and modeling of the tensile behavior of polypropylene/single-walled carbon nanotubes fibers. Compos. Struct. 174, 12–18 (2017).  https://doi.org/10.1016/j.compstruct.2017.04.049 CrossRefGoogle Scholar
  2. 2.
    Barretta, R., Brcic, M., Canadija, M., Luciano, R., Marotti de Sciarra, F.: Application of gradient elasticity to armchair carbon nanotubes: size effects and constitutive parameters assessment. Eur. J. Mech. A Solids 65, 1–13 (2017).  https://doi.org/10.1016/j.euromechsol.2017.03.002 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Romano, G., Barretta, R.: Nonlocal elasticity in nanobeams: the stress-driven integral model. Int. J. Eng. Sci. 115, 14–27 (2017).  https://doi.org/10.1016/j.ijengsci.2017.03.002 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Faghidian, S.A.: Reissner stationary variational principle for nonlocal strain gradient theory of elasticity. Eur. J. Mech. A Solids 70, 115–126 (2018).  https://doi.org/10.1016/j.euromechsol.2018.02.009 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Faghidian, S.A.: On non-linear flexure of beams based on non-local elasticity theory. Int. J. Eng. Sci. 124, 49–63 (2018).  https://doi.org/10.1016/j.ijengsci.2017.12.002 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Faghidian, S.A.: Integro-differential nonlocal theory of elasticity. Int. J. Eng. Sci. 129, 96–110 (2018).  https://doi.org/10.1016/j.ijengsci.2018.04.007 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Barretta, R., Marotti de Sciarra, F.: Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams. Int. J. Eng. Sci. 130, 187–198 (2018).  https://doi.org/10.1016/j.ijengsci.2018.05.009 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Zhang, L., Guo, J., Xing, Y.: Nonlocal analytical solution of functionally graded multilayered one-dimensional hexagonal piezoelectric quasicrystal nanoplates. Acta Mech. (2019).  https://doi.org/10.1007/s00707-018-2344-7 MathSciNetGoogle Scholar
  9. 9.
    Attia, M.A., Mohamed, S.A.: Coupling effect of surface energy and dispersion forces on nonlinear size-dependent pull-in instability of functionally graded micro-/nanoswitches. Acta Mech. (2019).  https://doi.org/10.1007/s00707-018-2345-6 MathSciNetGoogle Scholar
  10. 10.
    Gharahi, A., Schiavone, P.: Edge dislocation with surface flexural resistance in micropolar materials. Acta Mech. (2019).  https://doi.org/10.1007/s00707-018-2338-5 MathSciNetzbMATHGoogle Scholar
  11. 11.
    Genoese, A., Genoese, A., Salerno, G.: On the nanoscale behaviour of single-wall C, BN and SiC nanotubes. Acta Mech. (2019).  https://doi.org/10.1007/s00707-018-2336-7 MathSciNetGoogle Scholar
  12. 12.
    Bunoiu, R., Gaudiello, A., Leopardi, A.: Asymptotic analysis of a Bingham fluid in a thin T-like shaped structure. J. Math. Pures Appl. 123, 148–166 (2019).  https://doi.org/10.1016/j.matpur.2018.01.001 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Zhang, Y.P., Challamel, N., Wang, C.M., Zhang, H.: Comparison of nano-plate bending behaviour by Eringen nonlocal plate, Hencky bar-net and continualised nonlocal plate models. Acta Mech. (2018).  https://doi.org/10.1007/s00707-018-2326-9 Google Scholar
  14. 14.
    Romano, G., Barretta, R., Diaco, M.: Iterative methods for nonlocal elasticity problems. Continuum Mech. Thermodyn. 31, 669–689 (2019).  https://doi.org/10.1007/s00161-018-0717-8 MathSciNetCrossRefGoogle Scholar
  15. 15.
    Rashahmadi, S., Meguid, S.A.: Modeling size-dependent thermoelastic energy dissipation of graphene nanoresonators using nonlocal elasticity theory. Acta Mech. (2018).  https://doi.org/10.1007/s00707-018-2281-5 Google Scholar
  16. 16.
    Bahreman, M., Darijani, H., Bahrani Fard, A.: The size-dependent analysis of microplates via a newly developed shear deformation theory. Acta Mech. (2018).  https://doi.org/10.1007/s00707-018-2260-x Google Scholar
  17. 17.
    Zhang, G.Y., Gao, X.L.: A non-classical Kirchhoff rod model based on the modified couple stress theory. Acta Mech. (2018).  https://doi.org/10.1007/s00707-018-2279-z Google Scholar
  18. 18.
    Lembo, M.: Infinitesimal deformations and stability of rods made of nonlocal elastic materials. Acta Mech. (2018).  https://doi.org/10.1007/s00707-018-2315-z MathSciNetGoogle Scholar
  19. 19.
    Radgolchin, M., Moeenfard, H.: Size-dependent nonlinear vibration analysis of shear deformable microarches using strain gradient theory. Acta Mech. 229, 3025–3049 (2018).  https://doi.org/10.1007/s00707-018-2142-2 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Sidhardh, S., Ray, M.C.: Element-free Galerkin model of nano-beams considering strain gradient elasticity. Acta Mech. 229, 2765–2786 (2018).  https://doi.org/10.1007/s00707-018-2139-x MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Chen, H., Qi, C., Efremidis, G., Dorogov, M., Aifantis, E.C.: Gradient elasticity and size effect for the borehole problem. Acta Mech. 229, 3305–3318 (2018).  https://doi.org/10.1007/s00707-018-2109-3 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Gaudiello, A., Panasenko, G., Piatnitski, A.: Asymptotic analysis and domain decomposition for a biharmonic problem in a thin multi-structure. Commun. Contemp. Math. 18, 1550057 (2016).  https://doi.org/10.1142/S0219199715500571 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Koutsoumaris, C.C., Eptaimeros, K.G.: A research into bi-Helmholtz type of nonlocal elasticity and a direct approach to Eringen’s nonlocal integral model in a finite body. Acta Mech. 229, 3629–3649 (2018).  https://doi.org/10.1007/s00707-018-2180-9 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Sidhardh, S., Ray, M.C.: Inclusion problem for a generalized strain gradient elastic continuum. Acta Mech. 229, 3813–3831 (2018).  https://doi.org/10.1007/s00707-018-2199-y MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Fan, H., Xu, L.: Love wave in a classical linear elastic half-space covered by a surface layer described by the couple stress theory. Acta Mech. 229, 5121–5132 (2018).  https://doi.org/10.1007/s00707-018-2293-1 MathSciNetCrossRefGoogle Scholar
  26. 26.
    Polyanskiy, A.M., Polyanskiy, V.A., Belyaev, A.K., Yakovlev, Y.A.: Relation of elastic properties, yield stress and ultimate strength of polycrystalline metals to their melting and evaporation parameters with account for nano and micro structure. Acta Mech. 229, 4863–4873 (2018).  https://doi.org/10.1007/s00707-018-2262-8 MathSciNetCrossRefGoogle Scholar
  27. 27.
    Cajić, M., Lazarević, M., Karličić, D., Sun, H., Liu, X.: Fractional-order model for the vibration of a nanobeam influenced by an axial magnetic field and attached nanoparticles. Acta Mech. 229, 4791–4815 (2018).  https://doi.org/10.1007/s00707-018-2263-7 MathSciNetCrossRefGoogle Scholar
  28. 28.
    Gaudiello, A., Kolpakov, A.G.: Influence of non degenerated joint on the global and local behavior of joined rods. Int. J. Eng. Sci. 49, 295–309 (2011).  https://doi.org/10.1016/j.ijengsci.2010.11.002 CrossRefGoogle Scholar
  29. 29.
    Guo, J., Li, X.: Surface effects on an electrically permeable elliptical nano-hole or nano-crack in piezoelectric materials under anti-plane shear. Acta Mech. 229, 4251–4266 (2018).  https://doi.org/10.1007/s00707-018-2232-1 MathSciNetCrossRefGoogle Scholar
  30. 30.
    Apuzzo, A., Barretta, R., Faghidian, S.A., Luciano, R., Marotti de Sciarra, F.: Free vibrations of elastic beams by modified nonlocal strain gradient theory. Int. J. Eng. Sci. 133, 99–108 (2018).  https://doi.org/10.1016/j.ijengsci.2018.09.002 MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Apuzzo, A., Barretta, R., Faghidian, S.A., Luciano, R., Marotti de Sciarra, F.: Nonlocal strain gradient exact solutions for functionally graded inflected nano-beams. Compos. Part B 164, 667–674 (2019).  https://doi.org/10.1016/j.compositesb.2018.12.112 CrossRefGoogle Scholar
  32. 32.
    Civalek, Ö., Akgöz, B., Deliktaş, B.: Axial vibration of strain gradient micro-rods. In: Voyiadjis, G. (ed.) Handbook of Nonlocal Continuum Mechanics for Materials and Structures, pp. 1141–1155. Springer, Cham (2019).  https://doi.org/10.1007/978-3-319-58729-5_7 CrossRefGoogle Scholar
  33. 33.
    Numanoğlu, H.M., Akgöz, B., Civalek, Ö.: On dynamic analysis of nanorods. Int. J. Eng. Sci. 130, 33–50 (2018).  https://doi.org/10.1016/j.ijengsci.2018.05.001 CrossRefzbMATHGoogle Scholar
  34. 34.
    Akgöz, B., Civalek, Ö.: Longitudinal vibration analysis for microbars based on strain gradient elasticity theory. J. Vib. Control 20, 606–616 (2014).  https://doi.org/10.1177/1077546312463752 MathSciNetCrossRefGoogle Scholar
  35. 35.
    Akgöz, B., Civalek, Ö.: Longitudinal vibration analysis of strain gradient bars made of functionally graded materials (FGM). Compos. Part B 55, 263–268 (2013).  https://doi.org/10.1016/j.compositesb.2013.06.035 CrossRefGoogle Scholar
  36. 36.
    Demir, Ç., Civalek, Ö.: Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models. Appl. Math. Model. 37, 9355–9367 (2013).  https://doi.org/10.1016/j.apm.2013.04.050 CrossRefzbMATHGoogle Scholar
  37. 37.
    Aifantis, E.C.: Internal length gradient (ILG) material mechanics across scales and disciplines. Adv. Appl. Mech. 49, 1–110 (2016).  https://doi.org/10.1016/bs.aams.2016.08.001 CrossRefGoogle Scholar
  38. 38.
    Farajpour, A., Ghayesh, M.H., Farokhi, H.: A review on the mechanics of nanostructures. Int. J. Eng. Sci. 133, 231–263 (2018).  https://doi.org/10.1016/j.ijengsci.2018.09.006 MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Ghayesh, M.H., Farajpour, A.: A review on the mechanics of functionally graded nanoscale and microscale structures. Int. J. Eng. Sci. 137, 8–36 (2019).  https://doi.org/10.1016/j.ijengsci.2018.12.001 MathSciNetCrossRefGoogle Scholar
  40. 40.
    Romano, G., Barretta, R., Diaco, M., Marotti de Sciarra, F.: Constitutive boundary conditions and paradoxes in nonlocal elastic nano-beams. Int. J. Mech. Sci. 121, 151–156 (2017).  https://doi.org/10.1016/j.ijmecsci.2016.10.036 CrossRefGoogle Scholar
  41. 41.
    Romano, G., Barretta, R., Diaco, M.: On nonlocal integral models for elastic nanobeams. Int. J. Mech. Sci. 131, 490–499 (2017).  https://doi.org/10.1016/j.ijmecsci.2017.07.013 CrossRefGoogle Scholar
  42. 42.
    Romano, G., Luciano, R., Barretta, R., Diaco, M.: Nonlocal integral elasticity in nanostructures, mixtures, boundary effects and limit behaviours. Continuum Mech. Thermodyn. 30, 641–655 (2018).  https://doi.org/10.1007/s00161-018-0631-0 MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Romano, G., Barretta, R.: Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams. Compos. Part B 114, 184–188 (2017).  https://doi.org/10.1016/j.compositesb.2017.01.008 CrossRefGoogle Scholar
  44. 44.
    Apuzzo, A., Barretta, R., Luciano, R., de Sciarra, F.M., Penna, R.: Free vibrations of Bernoulli–Euler nano-beams by the stress-driven nonlocal integral model. Compos. Part B 123, 105–111 (2017).  https://doi.org/10.1016/j.compositesb.2017.03.057 CrossRefGoogle Scholar
  45. 45.
    Barretta, R., Canadija, M., Feo, L., Luciano, R., Marotti de Sciarra, F., Penna, R.: Exact solutions of inflected functionally graded nano-beams in integral elasticity. Compos. Part B 142, 273–286 (2018).  https://doi.org/10.1016/j.compositesb.2017.12.022 CrossRefGoogle Scholar
  46. 46.
    Barretta, R., Faghidian, S.A., Luciano, R., Medaglia, C.M., Penna, R.: Free vibrations of FG elastic Timoshenko nano-beams by strain gradient and stress driven nonlocal models. Compos. Part B 154, 20–32 (2018).  https://doi.org/10.1016/j.compositesb.2018.07.036 CrossRefGoogle Scholar
  47. 47.
    Barretta, R., Canadija, M., Luciano, R., Marotti de Sciarra, F.: Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams. Int. J. Eng. Sci. 126, 53–67 (2018).  https://doi.org/10.1016/j.ijengsci.2018.02.012 MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Barretta, R., Diaco, M., Feo, L., Luciano, R., Marotti de Sciarra, F., Penna, R.: Stress-driven integral elastic theory for torsion of nano-beams. Mech. Res. Commun. 87, 35–41 (2018).  https://doi.org/10.1016/j.mechrescom.2017.11.004 CrossRefGoogle Scholar
  49. 49.
    Barretta, R., Luciano, R., Marotti de Sciarra, F., Ruta, G.: Stress-driven nonlocal integral model for Timoshenko elastic nano-beams. Eur. J. Mech. A Solids 72, 275–286 (2018).  https://doi.org/10.1016/j.euromechsol.2018.04.012 MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Barretta, R., Fazelzadeh, S.A., Feo, L., Ghavanloo, E., Luciano, R.: Nonlocal inflected nano-beams: a stress-driven approach of bi-Helmholtz type. Compos. Struct. 200, 239–245 (2018).  https://doi.org/10.1016/j.compstruct.2018.04.072 CrossRefGoogle Scholar
  51. 51.
    Mahmoudpour, E., Hosseini-Hashemi, S., Faghidian, S.A.: Non-linear vibration analysis of FG nano-beams resting on elastic foundation in thermal environment using stress-driven nonlocal integral model. Appl. Math. Model. 57, 302–315 (2018).  https://doi.org/10.1016/j.apm.2018.01.021 MathSciNetCrossRefGoogle Scholar
  52. 52.
    Barretta, R., Faghidian, S.A., Luciano, R.: Longitudinal vibrations of nano-rods by stress-driven integral elasticity. Mech. Adv. Mater. Struct. (2019).  https://doi.org/10.1080/15376494.2018.1432806 Google Scholar
  53. 53.
    Barretta, R., Caporale, A., Faghidian, S.A., Luciano, R., Marotti de Sciarra, F., Medaglia, C.M.: A stress-driven local-nonlocal mixture model for Timoshenko nano-beams. Compos. Part B 164, 590–598 (2019).  https://doi.org/10.1016/j.compositesb.2019.01.012 CrossRefGoogle Scholar
  54. 54.
    Barretta, R., Fabbrocino, F., Luciano, R., Marotti de Sciarra, F.: Closed-form solutions in stress-driven two-phase integral elasticity for bending of functionally graded nano-beams. Physica E 97, 13–30 (2018).  https://doi.org/10.1016/j.physe.2017.09.026 CrossRefGoogle Scholar
  55. 55.
    Barretta, R., Faghidian, S.A., Luciano, R., Medaglia, C.M., Penna, R.: Stress-driven two-phase integral elasticity for torsion of nano-beams. Compos. Part B 145, 62–69 (2018).  https://doi.org/10.1016/j.compositesb.2018.02.020 CrossRefGoogle Scholar
  56. 56.
    Apuzzo, A., Barretta, R., Fabbrocino, F., Faghidian, S.A., Luciano, R., Marotti de Sciarra, F.: Axial and torsional free vibrations of elastic nano-beams by stress-driven two-phase elasticity. J. Appl. Comput. Mech. 5, 402–413 (2019).  https://doi.org/10.22055/jacm.2018.26552.1338 Google Scholar
  57. 57.
    Barretta, R., Faghidian, S.A., Marotti de Sciarra, F.: Stress-driven nonlocal integral elasticity for axisymmetric nano-plates. Int. J. Eng. Sci. 136, 38–52 (2019).  https://doi.org/10.1016/j.ijengsci.2019.01.003 MathSciNetCrossRefGoogle Scholar
  58. 58.
    Barretta, R., Fabbrocino, F., Luciano, R., Marotti de Sciarra, F., Ruta, G.: Buckling loads of nano-beams in stress-driven nonlocal elasticity. Mech. Adv. Mater. Struct. (2019).  https://doi.org/10.1080/15376494.2018.1501523 zbMATHGoogle Scholar
  59. 59.
    Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965).  https://doi.org/10.1016/0020-7683(65)90006-5 CrossRefGoogle Scholar
  60. 60.
    Aifantis, E.C.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 3, 1279–1299 (1992).  https://doi.org/10.1016/0020-7225(92)90141-3 CrossRefzbMATHGoogle Scholar
  61. 61.
    Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003).  https://doi.org/10.1016/S0022-5096(03)00053-X CrossRefzbMATHGoogle Scholar
  62. 62.
    Kong, S., Zhou, S., Nie, Z., Wang, K.: Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int. J. Eng. Sci. 47, 487–498 (2009).  https://doi.org/10.1016/j.ijengsci.2008.08.008 MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48, 1962–1990 (2011).  https://doi.org/10.1016/j.ijsolstr.2011.03.006 CrossRefGoogle Scholar
  64. 64.
    Zhou, S., Li, A., Wang, B.: A reformulation of constitutive relations in the strain gradient elasticity theory for isotropic materials. Int. J. Solids Struct. 80, 28–37 (2016).  https://doi.org/10.1016/j.ijsolstr.2015.10.018 CrossRefGoogle Scholar
  65. 65.
    Zhao, B., Liu, T., Chen, J., Peng, X., Song, Z.: A new Bernoulli–Euler beam model based on modified gradient elasticity. Arch. Appl. Mech. (2018).  https://doi.org/10.1007/s00419-018-1464-9 Google Scholar
  66. 66.
    Polizzotto, C.: A hierarchy of simplified constitutive models within isotropic strain gradient elasticity. Eur. J. Mech. A Solids 61, 92–109 (2017).  https://doi.org/10.1016/j.euromechsol.2016.09.006 MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Polizzotto, C.: Anisotropy in strain gradient elasticity: simplified models with different forms of internal length and moduli tensors. Eur. J. Mech. A Solids 71, 51–63 (2018).  https://doi.org/10.1016/j.euromechsol.2018.03.006 MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Han, J.-B., Hong, S.-Y., Song, J.-H., Kwon, H.-W.: Vibrational energy flow models for the Rayleigh–Love and Rayleigh–Bishop rods. J. Sound Vib. 333, 520–540 (2014).  https://doi.org/10.1016/j.jsv.2013.08.027 CrossRefGoogle Scholar
  69. 69.
    Mei, C.: Comparison of the four rod theories of longitudinally vibrating rods. J. Vib. Control. 21, 1639–1656 (2015).  https://doi.org/10.1177/1077546313494216 MathSciNetCrossRefGoogle Scholar
  70. 70.
    Aydogdu, M.: Longitudinal wave propagation in nanorods using a general nonlocal unimodal rod theory and calibration of nonlocal parameter with lattice dynamics. Int. J. Eng. Sci. 56, 17–28 (2012).  https://doi.org/10.1016/j.ijengsci.2012.02.004 CrossRefzbMATHGoogle Scholar
  71. 71.
    Ecsedi, I., Baksa, A.: Free axial vibration of nanorods with elastic medium interaction based on nonlocal elasticity and Rayleigh model. Mech. Res. Commun. 86, 1–4 (2017).  https://doi.org/10.1016/j.mechrescom.2017.10.003 CrossRefGoogle Scholar
  72. 72.
    Li, X.-F., Tang, G.-J., Shen, Z.-B., Lee, K.Y.: Size-dependent resonance frequencies of longitudinal vibration of a nonlocal Love nanobar with a tip nanoparticle. Math. Mech. Solids 22, 1529–1542 (2017).  https://doi.org/10.1177/1081286516640597 MathSciNetCrossRefzbMATHGoogle Scholar
  73. 73.
    Li, X.-F., Shen, Z.-B., Lee, K.Y.: Axial wave propagation and vibration of nonlocal nanorods with radial deformation and inertia. ZAMM J. Appl. Math. Mech. 97, 602–616 (2017).  https://doi.org/10.1002/zamm.201500186 MathSciNetCrossRefGoogle Scholar
  74. 74.
    Liu, H., Liu, H., Yang, J.: Longitudinal waves in carbon nanotubes in the presence of transverse magnetic field and elastic medium. Physica E 93, 153–159 (2017).  https://doi.org/10.1016/j.physe.2017.05.022 CrossRefGoogle Scholar
  75. 75.
    Nazemnezhad, R., Kamali, K.: An analytical study on the size dependent longitudinal vibration analysis of thick nanorods. Mater. Res. Express 5, 075016 (2018).  https://doi.org/10.1088/2053-1591/aacf6e CrossRefGoogle Scholar
  76. 76.
    Nazemnezhad, R., Kamali, K.: Free axial vibration analysis of axially functionally graded thick nanorods using nonlocal Bishop’s theory. Steel Compos. Struct. 28, 749–758 (2018).  https://doi.org/10.12989/scs.2018.28.6.749 Google Scholar
  77. 77.
    Karličić, D.Z., Ayed, A., Flaieh, E.: Nonlocal axial vibration of the multiple Bishop nanorod system. Math. Mech. Solids (2018).  https://doi.org/10.1177/1081286518766577 Google Scholar
  78. 78.
    Güven, U.: Love–Bishop rod solution based on strain gradient elasticity theory. C. R. Mec. 342, 8–16 (2014).  https://doi.org/10.1016/j.crme.2013.10.011 CrossRefGoogle Scholar
  79. 79.
    Güven, U.: The investigation of the nonlocal longitudinal stress waves with modified couple stress theory. Acta Mech. 221, 321–325 (2011).  https://doi.org/10.1007/s00707-011-0500-4 CrossRefzbMATHGoogle Scholar
  80. 80.
    Arefi, M., Zenkour, A.M.: Employing the coupled stress components and surface elasticity for nonlocal solution of wave propagation of a functionally graded piezoelectric Love nanorod model. J. Intell. Mater. Syst. Struct. 28, 2403–2413 (2017).  https://doi.org/10.1177/1045389X17689930 CrossRefGoogle Scholar
  81. 81.
    Güven, U.: A more general investigation for the longitudinal stress waves in microrods with initial stress. Acta Mech. 223, 2065–2074 (2012).  https://doi.org/10.1007/s00707-012-0682-4 MathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    Güven, U.: A generalized nonlocal elasticity solution for the propagation of longitudinal stress waves in bars. Eur. J. Mech. A Solids 45, 75–79 (2014).  https://doi.org/10.1016/j.euromechsol.2013.11.014 MathSciNetCrossRefzbMATHGoogle Scholar
  83. 83.
    Güven, U.: General investigation for longitudinal wave propagation under magnetic field effect via nonlocal elasticity. Appl. Math. Mech. Engl. Ed. 36, 1305–1318 (2015).  https://doi.org/10.1007/s10483-015-1985-9 MathSciNetCrossRefzbMATHGoogle Scholar
  84. 84.
    Arefi, M.: Surface effect and non-local elasticity in wave propagation of functionally graded piezoelectric nano-rod excited to applied voltage. Appl. Math. Mech. Engl. Ed. 37, 289–302 (2016).  https://doi.org/10.1007/s10483-016-2039-6 MathSciNetCrossRefzbMATHGoogle Scholar
  85. 85.
    Arefi, M.: Analysis of wave in a functionally graded magneto-electro-elastic nano-rod using nonlocal elasticity model subjected to electric and magnetic potentials. Acta Mech. 227, 2529–2542 (2016).  https://doi.org/10.1007/s00707-016-1584-7 MathSciNetCrossRefzbMATHGoogle Scholar
  86. 86.
    Rao, S.S.: Vibration of Continuous Systems. Wiley, Hoboken (2007)Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Structures for Engineering and ArchitectureUniversity of Naples Federico IINaplesItaly
  2. 2.Department of Mechanical Engineering, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations