Analysis of high-frequency ANCF modes: Navier–Stokes physical damping and implicit numerical integration

  • 240 Accesses

  • 2 Citations


This paper is concerned with the study of the high-frequency modes resulting from the use of the finite element absolute nodal coordinate formulation (ANCF) in multibody system (MBS) applications. The coupling between the cross-sectional deformations and bending and extension of ANCF beam and plate elements produces high-frequency modes which negatively impact the computational efficiency. In this paper, two new and fundamentally different approaches are proposed to efficiently solve stiff systems of differential/algebraic equations by filtering and/or damping out ANCF high-frequency modes. A new objective large rotation and large deformation viscoelastic constitutive model defined by the Navier–Stokes equations, widely used for fluids, is proposed for ANCF solids. The proposed Navier–Stokes viscoelastic constitutive model is formulated in terms of a diagonal damping matrix, allows damping out insignificant high-frequency modes, and leads to zero energy dissipation in the case of rigid body motion. The second approach, however, is numerical and is based on enhancing the two-loop implicit sparse matrix numerical integration (TLISMNI) method by introducing a new stiffness detection error control criterion. The new criterion avoids unnecessary reductions in the time step and minimizes the number of TLISMNI outer loop iterations required to achieve convergence. The TLISMNI method ensures that the MBS algebraic constraint equations are satisfied at the position, velocity, and acceleration levels, efficiently exploits sparse matrix techniques, and avoids numerical force differentiation. The performance of the TLISMNI/Adams algorithm using the proposed error criterion is evaluated by comparison with the TLISMNI/HHT method and the explicit predictor–corrector, variable-order, and variable step-size Adams methods. Several numerical examples are used to evaluate the accuracy, efficiency, and damping characteristics of the new nonlinear viscoelastic constitutive model and the TLISMNI procedure.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27


  1. 1.

    Aboubakr, A., Shabana, A.A.: Efficient and robust implementation of the TLISMNI method. J. Sound Vib. 353, 220–242 (2015)

  2. 2.

    Araki, T., White, J.L.: Shear viscosity of rubber modified thermoplastics: dynamically vulcanized thermoplastic elastomers and ABS resins at very low stress. Polym. Eng. Sci. 38(4), 590–595 (1998)

  3. 3.

    Atkinson, K.E.: An Introduction to Numerical Analysis. Wiley, New York (1978)

  4. 4.

    Bathe, K.J.: Finite Element Procedures. Prentice Hall, New Jersey (1996)

  5. 5.

    Belytschko, T., Liu, W.K., Moran, B., Elkhodary, K.: Nonlinear Finite Elements for Continua and Structures. Wiley, Chichester (2013)

  6. 6.

    Casalini, R., Bogoslovov, R., Qadri, S.B., Roland, C.M.: Nanofiller reinforcement of elastomeric polyurea. Polymer 53(6), 1282–1287 (2012)

  7. 7.

    Chapman, B., Jost, G., Van Der Pas, R.: Using OpenMP: Portable Shared Memory Parallel Programming. MIT press, Cambridge (2008)

  8. 8.

    Dahlquist, G.G.: A special stability problem for linear multistep methods. BIT Numer. Math. 3(1), 27–43 (1963)

  9. 9.

    Deribas, A.A.: Physics of Hardening and Explosive Welding. Nauka, SO (1980)

  10. 10.

    Dmitrochenko, O.N., Hussein, B.A., Shabana, A.A.: Coupled deformation modes in the large deformation finite element analysis: generalization. J. Comput. Nonlinear Dyn. 4(2), 021002-1–021002-8 (2009)

  11. 11.

    Drapaca, C.S., Sivaloganathan, S., Tenti, G.: Nonlinear constitutive laws in viscoelasticity. Math. Mech. Solids 12(5), 475–501 (2007)

  12. 12.

    Fung, Y.-C.: A First Course in Continuum Mechanics. Prentice-Hall, New Jersey (1977)

  13. 13.

    Garcia, D., Valverde, J., Dominguez, J.: An internal damping model for the absolute nodal coordinate formulation. Nonlinear Dyn. 42(4), 347–369 (2005)

  14. 14.

    Gerstmayr, J., Sugiyama, H., Mikkola, A.: Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. J. Comput. Nonlinear Dyn. 8(3), 031016 (2013)

  15. 15.

    Guo, X., Zhang, D.G., Li, L., Zhang, L.: Application of the two-loop procedure in multibody dynamics with contact and constraint. J. Sound Vib. 427, 15–27 (2018)

  16. 16.

    Hilber, H.M., Hughes, T.J., Taylor, R.L.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn. 5(3), 283–292 (1977)

  17. 17.

    Hussein, B.A., Shabana, A.A.: Sparse matrix implicit numerical integration of the stiff differential/algebraic equations: implementation. Nonlinear Dyn. 65(4), 369–382 (2011)

  18. 18.

    Kobayashi, H., Hiki, Y., Takahashi, H.: An experimental study on the shear viscosity of solids. J. Appl. Phys. 80(1), 122–130 (1996)

  19. 19.

    Kobayashi, H., Takahashi, H., Hiki, Y.: A new apparatus for measuring high viscosity of solids. Int. J. Thermophys. 16(2), 577–584 (1995)

  20. 20.

    Maqueda, L.G., Shabana, A.A.: Poisson modes and general nonlinear constitutive models in the large displacement analysis of beams. Multibody Syst. Dyn. 18(3), 375–396 (2007)

  21. 21.

    Michelin, Michelin Truck Tire Data Book, 2016, \(18^{\rm th}\) edition, p. 18

  22. 22.

    Mohamed, A.N.A., Shabana, A.A.: A nonlinear visco-elastic constitutive model for large rotation finite element formulations. Multibody Syst. Dyn. 26(1), 57–79 (2011)

  23. 23.

    Nashif, A.D., Jones, D.I., Henderson, J.P.: Vibration Damping. Wiley, New York (1985)

  24. 24.

    Patel, M., Orzechowski, G., Tian, Q., Shabana, A.A.: A new multibody system approach for tire modeling using ANCF finite elements. Proc. Inst. Mech. Eng. K J. Multibody Dyn. 230(1), 69–84 (2016)

  25. 25.

    Savenkov, G.G., Meshcheryakov, Y.I.: Structural viscosity of solids. Combust. Explos. Shock Waves 38(3), 352–357 (2002)

  26. 26.

    Schmidt, A., Gaul, L.: Finite element formulation of viscoelastic constitutive equations using fractional time derivatives. Nonlinear Dyn. 29(1–4), 37–55 (2002)

  27. 27.

    Serikov, S.V.: Estimate of the ultimate deformation in the rupture of metal pipes subjected to intense loads. J. Appl. Mech. Tech. Phys. 28(1), 149–156 (1987)

  28. 28.

    Shabana, A.A.: Computational Continuum Mechanics, 3rd edn. Wiley, Chichester (2018)

  29. 29.

    Shabana, A.A., Hussein, B.A.: A two-loop sparse matrix numerical integration procedure for the solution of differential/algebraic equations: application to multibody systems. J. Sound Vib. 327, 557–563 (2009)

  30. 30.

    Shabana, A.A., Zhang, D., Wang, G.: TLISMNI/Adams algorithm for the solution of the differential/algebraic equations of constrained dynamical systems. Proc. Inst. Mech. Eng. K J. Multibody Dyn. 232(1), 129–149 (2018)

  31. 31.

    Shampine, L.F., Gordon, M.K.: Computer Solution of Ordinary Differential Equations: The Initial Value Problem. Freeman, San Francisco (1975)

  32. 32.

    Simo, J.C., Hughes, T.J.: Computational Inelasticity. Springer, Berlin (2006)

  33. 33.

    Snowdon, J.C.: Vibration and Shock in Damped Mechanical Systems. Wiley, New York (1968)

  34. 34.

    Sopanen, J.T., Mikkola, A.M.: Description of elastic forces in absolute nodal coordinate formulation. Nonlinear Dyn. 34(1–2), 53–74 (2003)

  35. 35.

    Spencer, A.J.M.: Continuum Mechanics. Longman, London (1980)

  36. 36.

    Stepanov, G.V.: Elastoplastic Deformation of Materials under Pulse Loads. Naukova Dumka, Kiev (1979)

  37. 37.

    Stepanov, G.V.: Effect of strain rate on the characteristics of elastoplastic deformation of metallic materials. J. Appl. Mech. Tech. Phys. 23(1), 141–146 (1982)

  38. 38.

    Takahashi, Y., Shimizu, N., Suzuki, K.: Introduction of damping matrix into absolute nodal coordinate formulation. In: The Proceedings of the Asian Conference on Multibody Dynamics 33–40 (2002)

  39. 39.

    Ugural, A.C., Fenster, S.K.: Advanced Strength and Applied Elasticity, 3rd edn. Prentice-Hall, New Jersey (1995)

  40. 40.

    White, F.M.: Fluid Mechanics, 5th edn. McGraw Hill, New York (2003)

  41. 41.

    White, J.L., Han, M.H., Nakajima, N., Brzoskowski, R.: The influence of materials of construction on biconical rotor and capillary measurements of shear viscosity of rubber and its compounds and considerations of slippage. J. Rheol. 35(1), 167–189 (1991)

  42. 42.

    Wineman, A.: Nonlinear viscoelastic solids—a review. Math. Mech. Solids 14(3), 300–366 (2009)

  43. 43.

    Yoo, W.S., Lee, J.H., Park, S.J., Sohn, J.H., Dmitrochenko, O., Pogorelov, D.: Large oscillations of a thin Cantilever beam: physical experiments and simulation using the absolute nodal coordinate formulation. Nonlinear Dyn. 34(1–2), 3–29 (2003)

  44. 44.

    Zhang, L., Zhang, D.: A two-loop procedure based on implicit Runge–Kutta method for index-3 Dae of constrained dynamic problems. Nonlinear Dyn. 85(1), 263–280 (2016)

  45. 45.

    Zhang, Y., Tian, Q., Chen, L., Yang, J.J.: Simulation of a viscoelastic flexible multibody system using absolute nodal coordinate and fractional derivative methods. Multibody Syst. Dyn. 21(3), 281–303 (2009)

Download references


This research was supported by the National Science Foundation (Project # 1632302).

Author information

Correspondence to Ahmed A. Shabana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grossi, E., Shabana, A.A. Analysis of high-frequency ANCF modes: Navier–Stokes physical damping and implicit numerical integration. Acta Mech 230, 2581–2605 (2019) doi:10.1007/s00707-019-02409-8

Download citation